分析 (1)cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB即可求解.
(2)由正弦定理得$\frac{BC}{sinA}=\frac{AC}{sinB}$⇒AC=12$\sqrt{2}$,由D為AB的中點(diǎn),⇒${\overrightarrow{CD}}^{2}=\frac{1}{4}({\overrightarrow{CA}}^{2}+{\overrightarrow{CB}}^{2}+2\overrightarrow{CA}•\overrightarrow{CB})$=$\frac{1}{4}(288+400+2×12\sqrt{2}×20×(-\frac{\sqrt{2}}{10})$=592,即可求得CD
解答 解:(1)在△ABC中,由cosB=$\frac{4}{5}$.得sinB=$\frac{3}{5}$,
則cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{\sqrt{2}}{2}×\frac{4}{5}+\frac{\sqrt{2}}{2}×\frac{3}{5}=-\frac{\sqrt{2}}{10}$.
(2)在△ABC中,∵sinB=$\frac{3}{5}$,A=45°,BC=20,
由正弦定理得$\frac{BC}{sinA}=\frac{AC}{sinB}$⇒AC=12$\sqrt{2}$,
∵D為AB的中點(diǎn),∴$\overrightarrow{CD}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$⇒${\overrightarrow{CD}}^{2}=\frac{1}{4}({\overrightarrow{CA}}^{2}+{\overrightarrow{CB}}^{2}+2\overrightarrow{CA}•\overrightarrow{CB})$=$\frac{1}{4}(288+400+2×12\sqrt{2}×20×(-\frac{\sqrt{2}}{10})$=592,
∴CD=4$\sqrt{37}$.
點(diǎn)評(píng) 本題考查了三角恒等變形,正弦定理,考查了計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$ | B. | $\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | C. | $\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$ | D. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=1,g(x)=x0 | B. | f(x)=x2,g(x)=(x+1)2 | ||
C. | f(x)=x,g(x)=elnx | D. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com