1、證明兩角差的余弦公式;
2、由推導(dǎo)兩角和的余弦公式.
3、已知△ABC的面積,且,求.
【解析】本試題主要是考查了利用三角函數(shù)總兩角和差的三角關(guān)系式證明。并能,結(jié)合向量的知識進(jìn)行求解三角形問題的綜合運用。
(1)在平面直角坐標(biāo)系中,以原點為圓心,作一單位圓,再以原點為頂點,x軸非負(fù)半軸為始邊分別作角α,β.
設(shè)它們的終邊分別交單位圓于點P1(cosα,sinα),P2(cosβ,sinβ),即有兩單位向量,它們的所成角是|α-β|,根據(jù)向量數(shù)量積的性質(zhì)能夠證明cos(α-β)=cosαcosβ+sinαsinβ.
(2)先由誘導(dǎo)公式得sin(α+β)=cos (),再進(jìn)一步整理為cos[()-β],然后利用和差公式和誘導(dǎo)公式能夠得到sin(α+β)=sinαcosβ+cosαsinβ
2、
由,
由,所以
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
π |
2 |
1 |
3 |
7 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省沭陽縣高一下學(xué)期期中調(diào)研測試數(shù)學(xué)試卷(解析版) 題型:解答題
(1)如圖,已知是坐標(biāo)平面內(nèi)的任意兩個角,且,證明兩角差的余弦公式:;
(2)已知,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省期末題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com