(1)利用向量有關知識與方法證明兩角差的余弦公式:C α﹣β:cos(α﹣β)=cosαcosβ+sinαsinβ;
(2)由C α﹣β推導兩角和的正弦公式S α+β:sin(α+β)=sinαcosβ+cosαsinβ.
解:(1)如圖,在平面直角坐標系中,以原點為圓心, 作一單位圓,
再以原點為頂點,x軸非負半軸為始邊分別作角α,β.
設它們的終邊分別交單位圓于點P1(cosα,sinα),P2(cosβ,sinβ),
即有兩單位向量,它們的所成角是|α﹣β|,
根據(jù)向量數(shù)量積的性質得:
|             ①
又根據(jù)向量數(shù)量積的坐標運算得:
=cosαcosβ+sinαsinβ                               ②
 由①②得 cos(α﹣β)=cosαcosβ+sinαsinβ
(2)sin(α+β)=cos(]
=cos[(﹣α]
=cos()cosβ+sin()sinβ =sinαcosβ+cosαsinβ
即有sin(α+β)=sinαcosβ+cosαsinβ
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當l的斜率為1時,坐標原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?

若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關關系式計算,第二問利用向量坐標關系及方程的思想,借助根與系數(shù)關系解決問題,注意特殊情況的處理。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當l的斜率為1時,坐標原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?

若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關關系式計算,第二問利用向量坐標關系及方程的思想,借助根與系數(shù)關系解決問題,注意特殊情況的處理。

查看答案和解析>>

同步練習冊答案