已知等比數(shù)列的各項(xiàng)均為正數(shù),且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
(1);(2)數(shù)列的前項(xiàng)和為.

試題分析:(1)先用等比數(shù)列的性質(zhì)化簡(jiǎn)得到公比,然后用首項(xiàng)與公比表示,可得,從而求出,最后利用等比數(shù)列的通項(xiàng)公式寫(xiě)出通項(xiàng)公式即可;(2)由(1)先求出,從而再利用等差數(shù)列的前項(xiàng)和公式求出,從而,最后采用裂項(xiàng)相消法求和即可得到數(shù)列的前項(xiàng)和.
試題解析:(1)設(shè)等比數(shù)列的公比為,由       1分
,由已知,                   3分
,                    5分
數(shù)列的通項(xiàng)公式為                     6分
(2)  9分
                    10分

數(shù)列的前項(xiàng)和為                  12分.項(xiàng)和公式;3.數(shù)列求和的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,為等比數(shù)列, ,且 
(1)求;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和滿足,又,.
(1)求實(shí)數(shù)k的值;
(2)問(wèn)數(shù)列是等比數(shù)列嗎?若是,給出證明;若不是,說(shuō)明理由;
(3)求出數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且的等比中項(xiàng).
(1) 求數(shù)列的通項(xiàng)公式;
(2) 若數(shù)列滿足,且,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在公差為d的等差數(shù)列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Snan n-1=2(n∈N*),設(shè)cn=2nan.
(1)求證:數(shù)列{cn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)按以下規(guī)律構(gòu)造數(shù)列{bn},具體方法如下:
b1c1,b2c2c3,b3c4c5c6c7,…,第n項(xiàng)bn由相應(yīng)的{cn}中2n-1項(xiàng)的和組成,求數(shù)列{bn}的通項(xiàng)bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,且S=9S2,S4=4S2,則數(shù)列{an}的通項(xiàng)公式為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前n項(xiàng)和為,且,則(    )
A.8B.9C.1 0D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若等差數(shù)列滿足,則公差______;______.

查看答案和解析>>

同步練習(xí)冊(cè)答案