【題目】已知函數(shù).

1)求函數(shù)的最小值;

2)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).

【答案】12)當(dāng)時(shí),0個(gè)零點(diǎn);當(dāng)時(shí),1個(gè)零點(diǎn);當(dāng)時(shí),2個(gè)零點(diǎn).

【解析】

1)令求導(dǎo),令,求出的值,進(jìn)而求出單調(diào)區(qū)間,極小值,求出最小值;

2)求,求出單調(diào)區(qū)間和極值,得出,等價(jià)轉(zhuǎn)化為,轉(zhuǎn)化為求直線與函數(shù)的圖像交點(diǎn)個(gè)數(shù),通過求導(dǎo)數(shù)的方法,研究函數(shù)的單調(diào)區(qū)間,極值和圖像變化趨勢(shì),即可求解.

解:(1)令

,,

所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

所以時(shí),取得極小值,也是最小值,

所以;

2,令,

的遞減區(qū)間是,遞增區(qū)間是

所以的極小值為,也是最小值,.

所以,

因?yàn)?/span>,

,

,

的遞減區(qū)間是,遞增區(qū)間是,

所以的極小值為,也是最小值,

所以

所以的遞減區(qū)間是,遞增區(qū)間是,

又因?yàn)?/span>,且,

所以,當(dāng)時(shí),0個(gè)零點(diǎn);

當(dāng)時(shí),1個(gè)零點(diǎn);

當(dāng)時(shí),2個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內(nèi)的我國各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對(duì)生命、健康和疾病的認(rèn)識(shí),具有悠久歷史傳統(tǒng)和獨(dú)特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華民族的瑰寶.某科研機(jī)構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量(單位:克)與藥物功效(單位:藥物單位)之間具有關(guān)系.檢測(cè)這種藥品一個(gè)批次的5個(gè)樣本,得到成分甲的平均值為4克,標(biāo)準(zhǔn)差為克,則估計(jì)這批中醫(yī)藥的藥物功效的平均值為(

A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)是函數(shù)的圖象上任意兩,且函數(shù)在點(diǎn)A和點(diǎn)B處的切線互相垂直,則下列結(jié)論正確的是(

A.B.C.最大值為eD.最大值為e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新的勞動(dòng)合同法出臺(tái)后,某公司實(shí)行了年薪制工資結(jié)構(gòu)改革.該公司從2008年起,每人的工資由三個(gè)項(xiàng)目構(gòu)成,并按下表規(guī)定實(shí)施:

項(xiàng)目

金額[/(人年)]

性質(zhì)與計(jì)算方法

基礎(chǔ)工資

2007年基礎(chǔ)工資為20000

考慮到物價(jià)因素,決定從2008

起每年遞增10%(與工齡無關(guān))

房屋補(bǔ)貼

800

按職工到公司年限計(jì)算,每年遞增800

醫(yī)療費(fèi)

3200

固定不變

如果該公司今年有5位職工,計(jì)劃從明年起每年新招5名職工.

1)若今年算第一年,將第n年該公司付給職工工資總額y(萬元)表示成年限n的函數(shù);

2)若公司每年發(fā)給職工工資總額中,房屋補(bǔ)貼和醫(yī)療費(fèi)的總和總不會(huì)超過基礎(chǔ)工資總額的p%,求p的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線焦點(diǎn)為為拋物線上在第一象限內(nèi)一點(diǎn),為原點(diǎn),面積為.

1)求拋物線方程;

2)過點(diǎn)作兩條直線分別交拋物線于異于點(diǎn)的兩點(diǎn),且兩直線斜率之和為,

i)若為常數(shù),求證直線過定點(diǎn);

ii)當(dāng)改變時(shí),求(i)中距離最近的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)fx=cosasinx﹣sinbcosx)沒有零點(diǎn),則a2+b2的取值范圍是( )

A.[0,1B.[0,π2C.D.[0,π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S-ABCD中,底面ABCD為直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.

(1)求證:AB平面SAD;

(2)求平面SCD與平面SAB所成的銳二面角的余弦值;

(3)點(diǎn)E,F分別為線段BC,SB上的一點(diǎn),若平面AEF//平面SCD,求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形,,,將沿對(duì)角線進(jìn)行翻折,得到三棱錐,則在翻折的過程中,有下列結(jié)論正確的有_____.

①三棱錐的體積的最大值為

②三棱錐的外接球體積不變;

③三棱錐的體積最大值時(shí),二面角的大小是60°;

④異面直線所成角的最大值為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),CD兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿足.又曲線上的點(diǎn)A、B滿足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案