17.“cosα=0”是“sinα=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 由cosα=0可得α=kπ+$\frac{π}{2}$(k∈Z),即可判斷出結(jié)論.

解答 解:cosα=0可得α=kπ+$\frac{π}{2}$(k∈Z),
∴sinα=±1,反之成立,
∴“cosα=0”是“sinα=1”的必要不充分條件.
故選:B.

點(diǎn)評 本題考查了三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)是定義在[-5,5]上的偶函數(shù),且f(3)>f(1),則正確的是( 。
A.f(0)<f(5)B.f(-1)<f(3)C.f(3)>f(2)D.f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={x|y=ln(x-1)},集合B={y|y=2x},則A∪B( 。
A.(0,+∞)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=6,則2$\overrightarrow a$-$\overrightarrow b$在$\overrightarrow a$方向上的投影為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sinA-sinC(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角C的大;    
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若將f(x)圖象上的所有點(diǎn)向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈ZB.[2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$],k∈Z
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)F.
(Ⅰ)求證:AC•BC=AD•AE;    
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2$\sqrt{3}$cos(ωx+$\frac{π}{6}}$)的最小正周期是π,則f(${\frac{π}{3}}$)=-3或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=($\frac{1}{2}$)|x+1|的值域是(0,1].

查看答案和解析>>

同步練習(xí)冊答案