A. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z | B. | [2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$],k∈Z | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | D. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈Z |
分析 利用y=Asin(ωx+φ)的圖象特征,求出函數(shù)y=Asin(ωx+φ)的解析式,再根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律及正弦函數(shù)的圖象和性質(zhì),即可求得函數(shù)g(x)的單調(diào)增區(qū)間.
解答 解:由圖可知A=2,T=4($\frac{π}{3}$-$\frac{π}{12}$)=π,
∴?=$\frac{2π}{π}$=2.
∵由圖可得點(diǎn)($\frac{π}{12}$,2)在函數(shù)圖象上,可得:2sin(2×$\frac{π}{12}$+φ)=2,解得:2×$\frac{π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
∴由|φ|<$\frac{π}{2}$,可得:φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$).
∵若將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后,得到的函數(shù)解析式為:g(x)=2sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=2sin2x.
∴由2kπ-$\frac{π}{2}$≤2x≤2kπ+$\frac{π}{2}$,k∈Z,可得kπ-$\frac{π}{4}$≤x≤kπ+$\frac{π}{4}$,k∈Z,
∴函數(shù)g(x)的單調(diào)增區(qū)間為:[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z.
故選:A.
點(diǎn)評 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4) | B. | (0,+∞) | C. | (-∞,0) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com