已知函數(shù)的定義域為,部分對應(yīng)值如下表:

的導(dǎo)函數(shù)的圖象如圖所示,

則下列關(guān)于函數(shù)的命題:

① 函數(shù)是周期函數(shù);

② 函數(shù)是減函數(shù);

③ 如果當(dāng)時,的最大值是2,那么的最大值為4;

④ 當(dāng)時,函數(shù)有4個零點。

其中真命題的個數(shù)是 (    )

A.4個             B.3個              C.2個              D.1個

 

【答案】

D

【解析】

試題分析:先由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系畫出原函數(shù)的大致圖象,再借助與圖象和導(dǎo)函數(shù)的圖象,對四個命題,一一進(jìn)行驗證,對于假命題采用舉反例的方法進(jìn)行排除即可得到答案. 解:由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系得,原函數(shù)的大致圖象如圖:

由圖得:①為假命題,[-1,0]與[4,5]上單調(diào)性相反,但原函數(shù)圖象不一定對稱.②為真命題.因為在[0,2]上導(dǎo)函數(shù)為負(fù),故原函數(shù)遞減;③為假命題,當(dāng)t=5時,也滿足x∈[-1,t]時,f(x)的最大值是2;④為假命題,當(dāng)a離1非常接近時,對于第二個圖,y=f(x)-a有2個零點,也可以是3個零點.綜上得:真命題只有②.故選 D.

考點:導(dǎo)函數(shù)和原函數(shù)的單調(diào)性

點評:本題主要考查導(dǎo)函數(shù)和原函數(shù)的單調(diào)性之間的關(guān)系.二者之間的關(guān)系是:導(dǎo)函數(shù)為正,原函數(shù)遞增;導(dǎo)函數(shù)為負(fù),原函數(shù)遞減.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域為(0,+∞),且單調(diào)遞增,滿足f(4)=1,f(xy)=f(x)+f(y).
(Ⅰ)證明:f(1)=0;
(Ⅱ)若f(x)+f(x-3)≤1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域為R,對任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當(dāng)x>0時,f(x)>0.
(I)試判斷并證明f(x)的奇偶性;
(II)試判斷并證明f(x)的單調(diào)性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0對所有的θ∈[0,
π2
]
均成立,求實數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的定義域為

(1)求;

(2)若,且的真子集,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域為,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

0

下列關(guān)于函數(shù)的命題:

①函數(shù)上是減函數(shù);②如果當(dāng)時,最大值是,那么的最大值為;③函數(shù)個零點,則;④已知的一個單調(diào)遞減區(qū)間,則的最大值為。

其中真命題的個數(shù)是(           )

A、4個    B、3個  C、2個  D、1個

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省海口市高三高考調(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題

已知函數(shù)的定義域為,且,的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是

    A.    B.  C.    D.

 

查看答案和解析>>

同步練習(xí)冊答案