A. | (-∞$\frac{1}{3}$]∪[3,+∞) | B. | [$\frac{1}{3}$,3] | C. | [$\frac{1}{3}$,1] | D. | [1,3] |
分析 先判斷函數(shù)f(x)是定義域R上的偶函數(shù),再把不等式f(log3x)+f(log${\;}_{\frac{1}{3}}$x)≤2f(1)化為f(log3x)≤f(1);利用導(dǎo)數(shù)判斷f(x)在[0,+∞)上是單調(diào)增函數(shù),把不等式化為-1≤log3x≤1,求出解集即可.
解答 解:函數(shù)f(x)=(ex-e-x)x,x∈R,
∴f(-x)=(e-x-ex)•(-x)=(ex-e-x)x=f(x),
∴f(x)是定義域R上的偶函數(shù);
又f(${log}_{\frac{1}{3}}$x)=f(-log3x)=f(log3x),
∴不等式f(log3x)+f(log${\;}_{\frac{1}{3}}$x)≤2f(1)可化為f(log3x)≤f(1);
又f′(x)=(ex-e-x)+(ex+e-x)x,
當(dāng)x≥0時(shí),f′(x)≥0恒成立,
∴f(x)在[0,+∞)上是單調(diào)增函數(shù);
∴原不等式可化為-1≤log3x≤1,
解得$\frac{1}{3}$≤x≤3;
∴x的取值范圍是[$\frac{1}{3}$,3].
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性與單調(diào)性的應(yīng)用問題,也考查了不等式的解法與應(yīng)用問題,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {(-1,0)} | B. | {-1} | C. | {-1,0} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com