【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導函數(shù)f′(x)的極值點是f(x)的零點.(極值點是指函數(shù)取極值時對應的自變量的值)
(Ⅰ)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.

【答案】(Ⅰ)解:因為f(x)=x3+ax2+bx+1,
所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,
令g′(x)=0,解得x=﹣
由于當x>﹣ 時g′(x)>0,g(x)=f′(x)單調(diào)遞增;當x<﹣ 時g′(x)<0,g(x)=f′(x)單調(diào)遞減;
所以f′(x)的極小值點為x=﹣ ,
由于導函數(shù)f′(x)的極值點是原函數(shù)f(x)的零點,
所以f(﹣ )=0,即﹣ + +1=0,
所以b= + (a>0).
因為f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,
所以f′(x)=3x2+2ax+b=0有兩個不等的實根,
所以4a2﹣12b>0,即a2 + >0,解得a>3,
所以b= + (a>3).
(Ⅱ)證明:由(1)可知h(a)=b2﹣3a= + = (4a3﹣27)(a3﹣27),
由于a>3,所以h(a)>0,即b2>3a;
(Ⅲ)解:由(1)可知f′(x)的極小值為f′(﹣ )=b﹣ ,
設(shè)x1 , x2是y=f(x)的兩個極值點,則x1+x2= ,x1x2= ,
所以f(x1)+f(x2)= + +a( + )+b(x1+x2)+2
=(x1+x2)[(x1+x22﹣3x1x2]+a[(x1+x22﹣2x1x2]+b(x1+x2)+2
= +2,
又因為f(x),f′(x)這兩個函數(shù)的所有極值之和不小于﹣
所以b﹣ + +2= ≥﹣ ,
因為a>3,所以2a3﹣63a﹣54≤0,
所以2a(a2﹣36)+9(a﹣6)≤0,
所以(a﹣6)(2a2+12a+9)≤0,
由于a>3時2a2+12a+9>0,
所以a﹣6≤0,解得a≤6,
所以a的取值范圍是(3,6].
【解析】(Ⅰ)通過對f(x)=x3+ax2+bx+1求導可知g(x)=f′(x)=3x2+2ax+b,進而再求導可知g′(x)=6x+2a,通過令g′(x)=0進而可知f′(x)的極小值點為x=﹣ ,從而f(﹣ )=0,整理可知b= + (a>0),結(jié)合f(x)=x3+ax2+bx+1(a>0,b∈R)有極值可知f′(x)=0有兩個不等的實根,進而可知a>3.
(Ⅱ)通過(1)構(gòu)造函數(shù)h(a)=b2﹣3a= + = (4a3﹣27)(a3﹣27),結(jié)合a>3可知h(a)>0,從而可得結(jié)論;
(Ⅲ)通過(1)可知f′(x)的極小值為f′(﹣ )=b﹣ ,利用韋達定理及完全平方關(guān)系可知y=f(x)的兩個極值之和為 +2,進而問題轉(zhuǎn)化為解不等式b﹣ + +2= ≥﹣ ,因式分解即得結(jié)論.
【考點精析】認真審題,首先需要了解基本求導法則(若兩個函數(shù)可導,則它們和、差、積、商必可導;若兩個函數(shù)均不可導,則它們的和、差、積、商不一定不可導),還要掌握利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直三棱柱ABC-A1B1C1中,ACBC,D為AB的中點,AC=BC=BB1.

求證:(1)BC1AB1.

(2)BC1平面CA1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中Ai的橫、縱坐標分別為第i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1 , Q2 , Q3中最大的是
②記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1 , p2 , p3中最大的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},則方程f(x)﹣lgx=0的解的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求異面直線A1B與AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)為有公共焦點的橢圓與雙曲線的一個交點,且若橢圓的離心率為,雙曲線的離心率為的最小值為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率為,兩個頂點分別為,.過點的直線交橢圓于兩點,直線的交點為

(1)求橢圓的標準方程;

(2)求證:點在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y= 的部分圖象大致為( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案