【題目】函數(shù)

1)當時,求方程的根的個數(shù);

2)若恒成立,求的取值范圍.

注: 為自然對數(shù)的底數(shù)

【答案】1)兩個 2

【解析】

1)轉化為研究函數(shù)零點問題,利用導數(shù)研究其單調性,再根據(jù)零點存在定理確定零點個數(shù);

2)先轉化為對應函數(shù)最值問題:,再令,轉化為解不等式,最后根據(jù)導數(shù)研究新函數(shù)單調性,根據(jù)單調性解不等式得結果.

1)當時,構造函數(shù),求導得:

時,,上單調遞減;

時,上單調遞增;

又∵,

,使,即存在兩個零點

∴方程存在兩個根.

2,

i)當時,,不合題意,舍去;

ii)當時,由可得,列表:

-

0

+

極小值

據(jù)表可得,,依題意有

,則上式等價于,等價于

構造函數(shù),

記函數(shù),易證得上單調遞減,在上單調遞增,

,∴,∴上單調遞增,注意到,

綜上所述,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在一條景觀道的一端有一個半徑為米的圓形摩天輪O,逆時針分鐘轉一圈,從處進入摩天輪的座艙,垂直于地面,在距離米處設置了一個望遠鏡.

1)同學甲打算獨自乘坐摩天輪,但是其母親不放心,于是約定在登上摩天輪座艙分鐘后,在座艙內向其母親揮手致意,而其母親則在望遠鏡中仔細觀看.問望遠鏡的仰角應調整為多少度?(精確到1度)

2)在同學甲向其母親揮手致意的同時,同一座艙的另一名乘客乙在拍攝地面上的一條綠化帶,發(fā)現(xiàn)取景的視角恰為,求綠化帶的長度(精確到1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)在曲線上任取一點,連接,在射線上取,使,點軌跡的極坐標方程;

2)在曲線上任取一點,在曲線上任取一點,的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,底面△是等腰直角三角形,為側棱的中點.

1)求證:平面;

2)求異面直線所成角的大。ńY果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于兩點,且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知為等邊三角形,為等腰直角三角形,,平面平面ABD,點E與點D在平面ABC的同側,且,.FAD中點,連接EF.

1)求證:平面ABC

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若為單調函數(shù),求a的取值范圍;

2)若函數(shù)僅一個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,線段、都是圓的弦,且垂直且相交于坐標原點,如圖所示,設△的面積為,設△的面積為.

1)設點的橫坐標為,用表示;

2)求證:為定值;

3)用、、、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時直線的方程;若沒有最小值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4正方體中,的中點,,點在正方體表面上移動,且滿足,則點和滿足條件的所有點構成的圖形的面積是______.

查看答案和解析>>

同步練習冊答案