精英家教網 > 高中數學 > 題目詳情
設f(x)=-x2+2,g(x)=|x-m|,若x0∈(0,+∞)使得f(x0)≥g(x0),則實數m的取值范圍是
[     ]
A.(-2,2)
B.(-2,2]
C.
D.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

f(x)=
x2-2x-1    x≥0
-2x+6       x<0
,若f(t)>2,則實數t的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
x2
, x≤-1或x≥1
x
, -1<x<1
,g(x)是二次函數,若f[g(x)]的值域是[0,+∞),則g(x)的值域是(  )
A、(-∞,-1]∪[1,+∞)
B、(-∞,-1]∪[0,+∞)
C、[0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
x2-|x|x≥1
|x|x<1
,若f(m)的取值范圍是(0,+∞),則m的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
x2-2x-1,    x≥0
-2x+6,       x<0
,若f(t)>2,則實數t的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={a2,a+1,-3},B={a-3,a2+1,2a-1},若A∩B={-3},
(Ⅰ)求實數a的值.
(Ⅱ)設f(x)=
x2-4x+6,x≥0
x+6,x<0
,求不等式f(x)>f(-a)的解集.

查看答案和解析>>

同步練習冊答案