【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1),給出下列命題:
①當x>0時,f(x)=﹣e﹣x(x﹣1);
②函數(shù)f(x)有2個零點;
③f(x)<0的解集為(﹣∞,﹣1)∪(0,1),
④x1 , x2∈R,都有|f(x1)﹣f(x2)|<2.其中正確命題的個數(shù)是( )
A.4
B.3
C.2
D.1
【答案】C
【解析】解:①f(x)為R上的奇函數(shù),設x>0,﹣x<0,則:f(﹣x)=e﹣x(﹣x+1)=﹣f(x);
∴f(x)=e﹣x(x﹣1);
∴故①錯誤,
②∵f(﹣1)=0,f(1)=0;
又f(0)=0;
∴f(x)有3個零點;
故②錯誤,
③當x<0時,由f(x)=ex(x+1)<0,得x+1<0;
即x<﹣1,
當x>0時,由f(x)=e﹣x(x﹣1)<0,得x﹣1<0;
得0<x<1,
∴f(x)<0的解集為(0,1)∪(﹣∞,﹣1);
故③正確,
④當x<0時,f′(x)=ex(x+2);
∴x<﹣2時,f′(x)<0,﹣2<x<0時,f′(x)>0;
∴f(x)在(﹣∞,0)上單調遞減,在(﹣2,0)上單調遞增;
∴x=﹣2時,f(x)取最小值﹣e﹣2,且x<﹣2時,f(x)<0;
∴f(x)<f(0)=1;
即﹣e﹣2<f(x)<1;
當x>0時,f′(x)=e﹣x(2﹣x);
∴f(x)在(0,2)上單調遞增,在(2,+∞)上單調遞減;
x=2時,f(x)取最大值e﹣2,且x>2時,f(x)>0;
∴f(x)>f(0)=﹣1;
∴﹣1<f(x)≤e﹣2;
∴f(x)的值域為(﹣1,e﹣2]∪[﹣e﹣2,1);
∴x1,x2∈R,都有|f(x1)﹣f(x2)|<2;
故④正確,
∴正確的命題為③④.
所以答案是:C .
【考點精析】利用函數(shù)奇偶性的性質和函數(shù)的最大(小)值與導數(shù)對題目進行判斷即可得到答案,需要熟知在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且 .
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an , 求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發(fā),繞著點O順時針方向旋轉至OD,在旋轉的過程中,記∠AOP為x(x∈[0,π]),OP所經(jīng)過的在正方形ABCD內的區(qū)域(陰影部分)的面積S=f(x),那么對于函數(shù)f(x)有以下三個結論,其中不正確的是( )
①f( )=
②函數(shù)f(x)在( ,π)上為減函數(shù)
③任意x∈[0, ],都有f(x)+f(π﹣x)=4.
A.①
B.③
C.②
D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x+m(m∈R)的圖象與x軸相交于A(x1 , 0),B(x2 , 0)兩點,且x1<x2 .
(I)若函數(shù)f(x)的最大值為2,求m的值;
(Ⅱ)若 恒成立,求實數(shù)k的取值范圍;
(Ⅲ)證明:x1x2<1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =( sinωx,1), =(cosωx,cos2ωx+1),設函數(shù)f(x)= .
(1)若函數(shù)f(x)的圖象關于直線x= 對稱,且ω∈[0,3]時,求函數(shù)f(x)的單調增區(qū)間;
(2)在(1)的條件下,當 時,函數(shù)f(x)有且只有一個零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn(n∈N*),滿足Sn=2an﹣1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: ,點P(4,0),過右焦點F作與y軸不垂直的直線l交橢圓C于A,B兩點. (Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:以坐標原點O為圓心與PA相切的圓,必與直線PB相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) (b≠0).
(1)若函數(shù)f(x)在定義域上是單調函數(shù),求實數(shù)b的取值范圍;
(2)求函數(shù)f(x)的極值點;
(3)令b=1, ,設A(x1 , y1),B(x2 , y2),C(x3 , y3)是曲線y=g(x)上相異三點,其中﹣1<x1<x2<x3 . 求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com