【題目】定義:若函數(shù)對任意的,都有成立,則稱上的“淡泊”函數(shù).

1)判斷是否為上的“淡泊”函數(shù),說明理由;

2)是否存在實數(shù),使上的“淡泊”函數(shù),若存在,求出的取值范圍;不存在,說明理由;

3)設上的“淡泊”函數(shù)(其中不是常值函數(shù)),且,若對任意的,都有成立,求的最小值.

【答案】1)是,理由詳見解析;(2)存在,;(3)最小值為.

【解析】

1)任取x1,x2[1,1],可得|fx1)﹣fx2|的不等式,結合題意可判函數(shù)為淡泊函數(shù);

2)假設存在kR,使得[1+∞)上為淡泊函數(shù),則滿足對任意x1,x2[1+∞),都有|fx1)﹣fx2|≤|x1x2|成立,代入已知可得k的不等式,解不等式可得;

3)不妨令0x1x21,運用絕對值不等式的性質以及新定義,即可得到結論.

1)任取x1,x2[1,1],可得|fx1)﹣fx2|

|)﹣(|

|x1+x2)(x1x2x1x2|

|x1x2||x1+x2|

x1,x2[11],∴x1+x2)∈[,]

x1+x2|[0,1],即|x1+x2|≤1,

|x1x2||x1+x2|≤|x1x2|

|fx1)﹣fx2|≤|x1x2|

∴函數(shù)[1,1]上是淡泊函數(shù);

2)假設存在kR,使得[1,+∞)上為淡泊函數(shù),

則滿足對任意x1,x2[1,+∞),都有|fx1)﹣fx2|≤|x1x2|成立,

|||k|||≤|x1x2|

|k|≤|x1+2)(x2+2|,

x1,x2[1,+∞),∴(x1+2)(x2+2)>1,

|k|≤1,解得﹣1≤k≤1;

3)不妨令0x1x21,由淡泊函數(shù)性質,有|fx1)﹣fx2|≤|x1x2|成立,

x2x1,則|fx1)﹣fx2|≤|x1x2|;

x2x1|fx1)﹣fx2||fx1)﹣f0+f1)﹣fx2|

≤|fx1)﹣f0|+|f1)﹣fx2|≤|x10|+|1x2|1x2+x11﹣(x2x1,

綜上,對任意0x1x21,|fx1)﹣fx2|恒成立,

對任意的,都成立,則

,的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計學中將個數(shù)的和記作

1)設,求

2)是否存在互不相等的非負整數(shù),,使得成立,若存在,請寫出推理的過程;若不存在請證明;

3)設是不同的正實數(shù),,對任意的,都有,判斷是否為一個等比數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),如果存在兩條平行直線,使得對于任意,都有恒成立,那么稱函數(shù)是帶狀函數(shù),若,之間的最小距離存在,則稱為帶寬.

1)判斷函數(shù)是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;

2)求證:函數(shù))是帶狀函數(shù);

3)求證:函數(shù))為帶狀函數(shù)的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社會機構為了調查對手機游戲的興趣與年齡的關系,通過問卷調查,整理數(shù)據(jù)得如下列聯(lián)表:

1)根據(jù)列聯(lián)表,能否有的把握認為對手機游戲的興趣程度與年齡有關?

2)若已經(jīng)從40歲以上的被調查者中用分層抽樣的方式抽取了10名,現(xiàn)從這10名被調查者中隨機選取3名,記這3名被選出的被調查者中對手機游戲很有興趣的人數(shù)為,求的分布列及數(shù)學期望.

附:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線過點,且漸近線方程為,直線與曲線交于點、兩點.

(1)求雙曲線的方程;

(2)若直線過原點,點是曲線上任一點,直線的斜率都存在,記為,試探究的值是否與點及直線有關,并證明你的結論;

(3)若直線過點,問在軸上是否存在定點,使得為常數(shù)?若存在,求出點坐標及此常數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為實數(shù).

1)討論函數(shù)的單調性;

2)設是函數(shù)的導函數(shù),若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),,若函數(shù)有4個零點,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場營銷人員進行某商品M市場營銷調查發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:

反饋點數(shù)

1

2

3

4

5

銷量(百件)/

0. 5

0. 6

1

1. 4

1. 7

1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當?shù)卦撋唐蜂N量(百件)與返還點數(shù)之間的相關關系. 請用最小二乘法求關于的線性回歸方程,并預測若返回6個點時該商品每天銷量;

2)若節(jié)日期間營銷部對商品進行新一輪調整. 已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調研機構對其中的200名消費者的返點數(shù)額的心理預期值進行了一個抽樣調查,得到如下一份頻數(shù)表:

返還點數(shù)預期值區(qū)間(百分比)

頻數(shù)

20

60

60

30

20

10

(。┣筮@200位擬購買該商品的消費者對返點點數(shù)的心理預期值的樣本平均數(shù)及中位數(shù)的估計值(同一區(qū)間的預期值可用該區(qū)間的中點值代替;估計值精確到0. 1);

(ⅱ)將對返點點數(shù)的心理預期值在的消費者分別定義為欲望緊縮型消費者和欲望膨脹型消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取2名進行跟蹤調查,設抽出的2人中,至少有一個人是欲望膨脹型消費者的概率是多少?

參考公式及數(shù)據(jù):①,;②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調性;

2)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案