【題目】已知是橢圓的左、右焦點,離心率為,是平面內兩點,滿足,線段的中點在橢圓上,周長為12.
(1)求橢圓的方程;
(2)若過的直線與橢圓交于,求(其中為坐標原點)的取值范圍.
【答案】(1) (2)
【解析】
(1)連接,由向量的性質得出點是線段的中點,結合中位線定理以及橢圓的性質得出,再由離心率公式得出,進而得出,即可得出橢圓方程;
(2)當直線的斜率不存在時,將直線,代入橢圓方程,得出坐標,利用向量數(shù)量積公式得出;當直線的斜率存在時,設直線的方程為,并代入橢圓方程,利用韋達定理得出,的值,由判別式得出的范圍,求出,利用向量的數(shù)量積公式得出,最后由不等式的性質得出其范圍.
(1)連接,,,
是線段的中點,是線段的中點,
由橢圓的定義知,,
周長為
由離心率為知,,解得
橢圓的方程為.
(2)當直線的斜率不存在時,直線,代入橢圓方程解得,
此時,
當直線的斜率存在時,設直線的方程為
代入橢圓的方程整理得,
設,則,
,解得
=
,,,
綜上所述,的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,且橢圓上存在一點,滿足.
(1)求橢圓的標準方程;
(2)過橢圓右焦點的直線與橢圓交于不同的兩點,求的內切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線ax+by=1與圓x2+y2=1相交于A,B兩點(其中a,b是實數(shù)),且△AOB是直角三角形(O是坐標原點),則點P(a,b)與點(0,1)之間距離的最小值為( ).
A.0B.C.-1D.+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《宋人撲棗圖軸》是作于宋朝的中國古畫,現(xiàn)收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結實累累,小孩群來攀扯,枝椏不;蝿,粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個動作,四人每人模仿一個動作.若他們采用抽簽的方式來決定誰模仿哪個動作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且在處切線垂直于軸.
(1)求的值;
(2)求函數(shù)在上的最小值;
(3)若恒成立,求滿足條件的整數(shù)的最大值.
(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學根據(jù)學生的興趣愛好,分別創(chuàng)建了“書法”、“詩詞”、“理學”三個社團,據(jù)資料統(tǒng)計新生通過考核選拔進入這三個社團成功與否相互獨立.2015年某新生入學,假設他通過考核選拔進入該校的“書法”、“詩詞”、“理學”三個社團的概率依次為、、,己知三個社團他都能進入的概率為,至少進入一個社團的概率為,且.
(1)求與的值;
(2)該校根據(jù)三個社團活動安排情況,對進入“書法”社的同學增加校本選修學分1分,對進入“詩詞”社的同學增加校本選修學分2分,對進入“理學”社的同學增加校本選修學分3分.求該新同學在社團方面獲得校本選修課學分分數(shù)不低于4分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.
(1)求直線的直角坐標方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2013年華人數(shù)學家張益唐證明了孿生素數(shù)猜想的一個弱化形式。孿生素數(shù)猜想是希爾伯特在1900年提出的23個問題之一,可以這樣描述:存在無窮多個素數(shù)p,使得p+2是素數(shù),素數(shù)對(p,p+2)稱為孿生素數(shù).在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其中能夠組成孿生素數(shù)的概率是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com