【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式。孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù)p,使得p+2是素?cái)?shù),素?cái)?shù)對(duì)(p,p+2)稱為孿生素?cái)?shù).在不超過30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是

A. B. C. D.

【答案】D

【解析】

由題意明確不超過30的素?cái)?shù)有10個(gè),滿足題意的孿生素?cái)?shù)對(duì)有4個(gè),利用古典概型公式可得結(jié)果.

不超過30的素?cái)?shù)有2,3,5,7,11,13,17,19,23,29,共10個(gè),

根據(jù)素?cái)?shù)對(duì)(p,p+2)稱為孿生素?cái)?shù),

則由不超過30的素?cái)?shù)組成的孿生素?cái)?shù)對(duì)為(3,5),(5,7),(11,13),(17,19),

共有4組,能夠組成孿生素?cái)?shù)的概率為,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過點(diǎn)(圖2).有下列四個(gè)命題:

A.正四棱錐的高等于正四棱柱高的一半

B.將容器側(cè)面水平放置時(shí),水面也恰好過點(diǎn)

C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過點(diǎn)

D.若往容器內(nèi)再注入升水,則容器恰好能裝滿

其中真命題的代號(hào)是: (寫出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形邊長(zhǎng)為,若在正方形邊上恰有個(gè)不同的點(diǎn),使,則的取值范圍為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在雙曲線上,且,則的面積為________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l經(jīng)過拋物線y2=6x的焦點(diǎn)F,且與拋物線相交于A,B兩點(diǎn).

(1)若直線l的傾斜角為60°,求|AB|的值;

(2)|AB|=9,求線段AB的中點(diǎn)M到準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在五棱錐中,側(cè)面底面,是邊長(zhǎng)為2的正三角形,四邊形為正方形,,且,的重心,是正方形的中心.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某公司舉行的一次真假游戲的有獎(jiǎng)競(jìng)猜中,設(shè)置了“科技”和“生活”這兩類試題,規(guī)定每位職工最多競(jìng)猜3次,每次競(jìng)猜的結(jié)果相互獨(dú)立.猜中一道“科技”類試題得4分,猜中一道“生活”類試題得2分,兩類試題猜不中的都得0分.將職工得分逐次累加并用X表示,如果X的值不低于4分就認(rèn)為通過游戲的競(jìng)猜,立即停止競(jìng)猜,否則繼續(xù)競(jìng)猜,直到競(jìng)猜完3次為止.競(jìng)猜的方案有以下兩種:方案1:先猜一道“科技”類試題,然后再連猜兩道“生活”類試題;

方案2:連猜三道“生活”類試題.

設(shè)職工甲猜中一道“科技”類試題的概率為0.5,猜中一道“生活”類試題的概率為0.6.

(1)你認(rèn)為職工甲選擇哪種方案通過競(jìng)猜的可能性大?并說(shuō)明理由.

(2)職工甲選擇哪一種方案所得平均分高?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊三角形的邊長(zhǎng)為,邊的中點(diǎn),沿折成直二面角,則三棱錐的外接球的表面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年“雙十一”全網(wǎng)銷售額達(dá)億元,相當(dāng)于全國(guó)人均消費(fèi)元,同比增長(zhǎng),監(jiān)測(cè)參與“雙十一”狂歡大促銷的家電商平臺(tái)有天貓、京東、蘇寧易購(gòu)、網(wǎng)易考拉在內(nèi)的綜合性平臺(tái),有拼多多等社交電商平臺(tái),有敦煌網(wǎng)、速賣通等出口電商平臺(tái).某大學(xué)學(xué)生社團(tuán)在本校名大一學(xué)生中采用男女分層抽樣,分別隨機(jī)調(diào)查了若干個(gè)男生和個(gè)女生的網(wǎng)購(gòu)消費(fèi)情況,制作出男生的頻率分布表、直方圖(部分)和女生的莖葉圖如下:

男生直方圖

分組(百元)

男生人數(shù)

頻率

合計(jì)

女生莖葉圖

(1)請(qǐng)完成頻率分布表的三個(gè)空格,并估計(jì)該校男生網(wǎng)購(gòu)金額的中位數(shù)(單位:元,精確到個(gè)位).

(2)若網(wǎng)購(gòu)為全國(guó)人均消費(fèi)的三倍以上稱為“剁手黨”,估計(jì)該校大一學(xué)生中的“剁手黨”人數(shù)為多少?從抽樣數(shù)據(jù)中網(wǎng)購(gòu)不足元的同學(xué)中隨機(jī)抽取人發(fā)放紀(jì)念品,則人都是女生的概率為多少?

(3)用頻率估計(jì)概率,從全市所有高校大一學(xué)生中隨機(jī)調(diào)查人,求其中“剁手黨”人數(shù)的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案