有如下真命題:“若數(shù)列{an}是一個(gè)公差為d的等差數(shù)列,則數(shù)列{an+an+1+an+2}是公差為3d的等差數(shù)列.”把上述命題類比到等比數(shù)列中,可得真命題是“________.”(注:填上你認(rèn)為可以成為真命題的一種情形即可,不必考慮所有可能的情形.)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、有如下真命題:“若數(shù)列{an}是一個(gè)公差為d的等差數(shù)列,則數(shù)列{an+an+1+an+2}是公差為3d的等差數(shù)列.”把上述命題類比到等比數(shù)列中,可得真命題是“
若數(shù)列{bn}是公比為q的等比數(shù)列,則數(shù)列{bn•bn+1•bn+2}是公比為q3的等比數(shù)列;或填為:若數(shù)列{bn}是公比為q的等比數(shù)列,則數(shù)列{bn+bn+1+bn+2}是公比為q的等比數(shù)列
.”(注:填上你認(rèn)為可以成為真命題的一種情形即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)為正數(shù)的等比數(shù)列{an}(n∈N*)的公比為q(q≠1),有如下真命題:若
n1+n2
2
=p
,則(an1an2)
1
2
=ap
(其中n1、n2、p為正整數(shù)).
(1)若
n1+n2
2
=p+
1
2
,試探究(an1an2)
1
2
與ap、q之間有何等量關(guān)系,并給予證明;
(2)對(duì)(1)中探究得出的結(jié)論進(jìn)行推廣,寫出一個(gè)真命題,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-2) 2009-2010學(xué)年 第30期 總第186期 人教課標(biāo)版(A選修1-2) 題型:022

有如下真命題:“若數(shù)列{an}是一個(gè)公差為d的等差數(shù)列,則數(shù)列{an+an+1+an+2}是公差為3d的等差數(shù)列.”把上述命題類比到等比數(shù)列中,可得真命題是“________.”(注:填上你認(rèn)為可以成為真命題的一種情形即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):6.5 合情推理與演繹推理(1)(解析版) 題型:解答題

有如下真命題:“若數(shù)列{an}是一個(gè)公差為d的等差數(shù)列,則數(shù)列{an+an+1+an+2}是公差為3d的等差數(shù)列.”把上述命題類比到等比數(shù)列中,可得真命題是“    .”(注:填上你認(rèn)為可以成為真命題的一種情形即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案