.設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0。

   (1)求f(1), f()的值;

   (2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;

   (3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{a??n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;

   (4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對(duì)于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請(qǐng)說(shuō)明理由.

(1)f(1)=0f()=-1  (2) 函數(shù)y=f(x)在(0,+∞)上是增函數(shù) 

(3)數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,從而有an=n  

(4)存在   正數(shù)M的范圍是


解析:

1)∵f(2×1)=f(2)+f(1), ∴f(1)=0

   又∵f(1)=f(2×)=f(2)+f(),且f(2)=1,∴f()=-1

(2)設(shè)…4分

∴函數(shù)y=f(x)在(0,+∞)上是增函數(shù)

(3)∵f(2)=1, ∴由f(Sn)=f(an)+f(an+1)-1(n∈N*),得f(2Sn)=f[an(an+1)]

∵函數(shù)y=f(x)在(0,+∞)上是增函數(shù),

∴2Sn=an(an+1)

∴數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,從而有an=n

(4)∵an=n,故不等式

可化為2n×1×2×3×…×n≥M×1×3×5×…×(2n-1),

是單調(diào)遞增

對(duì)一切n∈N*都成立的正數(shù)M的范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過(guò)點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)=
2x
2x+
2
上兩點(diǎn)p1(x1,y1),p2(x2,y2),若
op
=
1
2
(
op1
+
op2
)
,且P點(diǎn)的橫坐標(biāo)為
1
2

(1)求P點(diǎn)的縱坐標(biāo);
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項(xiàng)和,若Tn<a(Sn+2+
2
)
對(duì)一切n∈N*都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)在R上連續(xù),則f(x)在R上為遞增函數(shù)是f′(x)>0的…(    )

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是一次函數(shù),若f(1)=-1,且f′(2)=-4,則f(x)的解析式為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下學(xué)期第一次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)y=f(x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ¢(x)可能為(    )

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案