如圖所示,已知△ABC三邊所在直線分別與平面α交于P、Q、R三點(diǎn),求證:P、Q、R三點(diǎn)共線.

答案:
解析:

  思路解析:證明點(diǎn)共線、線共點(diǎn)問題時(shí)要綜合利用公理2和公理3.

  證明:∵A、B、C是不在同一直線上的三點(diǎn),

  ∴過A、B、C有一個(gè)平面β.

  又∵AB∩α=P,且ABβ,

  ∴點(diǎn)P既在β內(nèi)又在α內(nèi).設(shè)α∩β=l,

  則P∈l.

  同理可證:Q∈l,R∈l.

  ∴P、Q、R三點(diǎn)共線.

  方法歸納:(1)證明三點(diǎn)共線,通常先確定經(jīng)過兩點(diǎn)的直線是某兩個(gè)平面的交線,再證明第三點(diǎn)是這兩個(gè)平面的公共點(diǎn),即該點(diǎn)分別在這兩個(gè)平面內(nèi).

  (2)證明三線共點(diǎn)通常先證其中的兩條直線相交于一點(diǎn),然后再證第三條直線經(jīng)過這一點(diǎn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、如圖所示,已知AB⊥平面BCD,BC⊥CD,則圖中互相垂直的平面有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知AB⊥平面BCD,M、N分別是AC、AD的中點(diǎn),BC⊥CD.
(1)求證:MN∥平面BCD;
(2)求證:平面BCD⊥平面ABC;
(3)若AB=1,BC=
3
,求直線AC與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點(diǎn)D,BC=4cm,
(1)試判斷OD與AC的關(guān)系;
(2)求OD的長(zhǎng);
(3)若2sinA-1=0,求⊙O的直徑.
B:(選修4-4)已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=
4

(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次機(jī)器人足球比賽中,甲隊(duì)1號(hào)機(jī)器人由點(diǎn)A開始作勻速直線運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí),發(fā)現(xiàn)足球在點(diǎn)D處正以2倍于自己的速度向點(diǎn)A作勻速直線滾動(dòng).如圖所示,已知AB=4
2
dm,AD=17dm,∠BAC=45°
.若忽略機(jī)器人原地旋轉(zhuǎn)所需的時(shí)間,則該機(jī)器人最快可在何處截住足球?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知
AB
=2
BC
,
OA
=
a
,
OB
=
b
,
OC
=
c
,則
c
=
 
.(用
a
,
b
表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案