【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上,這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象,過去50周的資料顯示,該地周光照量(小時)都在30以上,其中不足50的周數(shù)大約5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周,根據(jù)統(tǒng)計(jì)某種改良黃瓜每個蔬菜大棚增加量(百斤)與每個蔬菜大棚使用農(nóng)夫1號液體肥料(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大鵬增加量是多少斤?
(2)因蔬菜大棚對光照要求較大,某光照控制儀商家為應(yīng)對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運(yùn)行,但每周光照控制儀最多可運(yùn)行臺數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時) | 30<X<50 | ||
光照控制儀最多可運(yùn)行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運(yùn)行,則該臺光照儀周利潤為4000元;若某臺光照儀未運(yùn)行,則該臺光照儀周虧損500元,欲使商家周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?
附:回歸方程系數(shù)公式: , .
【答案】(1)答案見解析;(2)應(yīng)該安裝2臺光照控制儀.
【解析】試題分析:(Ⅰ)由題中所給的數(shù)據(jù)求得線性回歸方程,然后進(jìn)行預(yù)測即可;
(Ⅱ)由題意分類討論求解分布列和數(shù)學(xué)期望即可.
試題解析:
(Ⅰ),
,
,
,
所以關(guān)于的線性回歸方程為,
當(dāng)時, 百斤=550斤,
所以估計(jì)如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大棚增加量是500斤.
(Ⅱ)記商家總利潤為元,由已知條件可知至少需安裝1臺,
①安裝1臺光照控制儀可獲得周利潤4000元,
②安裝2臺光照控制儀的情形:
當(dāng)時,一臺光照控制儀運(yùn)行,此時元,
當(dāng)時,兩臺光照控制儀都運(yùn)行,此時元,
故的分布列為
3500 | 8000 | |
0.2 | 0.8 |
所以元,
③安裝3臺光照控制儀的情形:
當(dāng)時,一臺光照控制儀運(yùn)行,此時元,
當(dāng)時,兩臺光照控制儀運(yùn)行,此時元,
當(dāng)時,三臺光照控制儀都運(yùn)行,此時元,
故的分布列為
3000 | 7500 | 12000 | |
0.2 | 0.7 | 0.1 |
所以元,
綜上,為使商家周總利潤的均值達(dá)到最大應(yīng)該安裝2臺光照控制儀.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓內(nèi)有一點(diǎn),為圓上一動點(diǎn),線段的垂直平分線與的連線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程.
(Ⅱ)若動直線與點(diǎn)的軌跡交于、兩點(diǎn),且以為直徑的圓恒過坐標(biāo)原點(diǎn).問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一個頂點(diǎn),且右焦點(diǎn)到直線的距離為.
(1)求橢圓的方程.
(2)若點(diǎn)為橢圓的下頂點(diǎn),是否存在斜率為,且過定點(diǎn)的直線,使與橢圓交于不同兩點(diǎn),且滿足? 若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為, 的極坐標(biāo)方程為.
(1)求直線與的交點(diǎn)的軌跡的方程;
(2)若曲線上存在4個點(diǎn)到直線的距離相等,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知與分別是邊長為1與2的正三角形, ,四邊形為直角梯形,且, ,點(diǎn)為的重心, 為中點(diǎn), 平面, 為線段上靠近點(diǎn)的三等分點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)若二面角的余弦值為,試求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足.
(Ⅰ)當(dāng)時,解不等式;
(Ⅱ)若關(guān)于x的方程的解集中有且只有一個元素,求a的值;
(Ⅲ)設(shè),若對,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com