下列命題中正確命題的個數(shù)是 ( 。
①經過空間一點一定可作一平面與兩異面直線都平行;
②已知平面
、
,直線
a、
b,若
,
,則
;
③有兩個側面垂直于底面的四棱柱為直四棱柱;
④四個側面兩
兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠
APB=∠
BPC=∠
CPA,則三棱錐
P-
ABC是正三棱錐.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無效)
如圖,四棱錐
S-
ABCD中,
SD底面
ABCD,
AB//
DC,
ADDC,
AB=
AD=1,
DC=
SD=2,
E為棱
SB上的一點,平面
EDC平面
SBC .
(Ⅰ)證明:
SE=2
EB;
(Ⅱ)求二面角
A-
DE-
C的大小 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分,第(1)小題6分,第(2)小題6分)
如圖,在棱長為1的正方體中,
是棱
的中點,
(1)求證:
;
(2)求
與平面
所成角大小(用反三角函數(shù)表示).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,多面體ABCDS中,面ABCD為矩形,
,
(1)求證:CD
;
(2)求AD與SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點,PA⊥面ABCD。
(1)證明:PF⊥FD;
(2)在PA上是否存在點G,使得EG//平面PFD。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
半徑為
的球面上有
、
、
三點,已知
和
間的球面距離為
,
和
,
和
的球面距離都為
,求
、
、
三點所在的圓面與球心的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖①,
,
分別是直角三角形
邊
和
的中點,
,沿
將三角形
折成如圖②所示的銳二面角
,若
為線段
中點.求證:
(1)直線
平面
;(6分)
(2)平面
平面
.(8分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在正四棱錐S-ABCD中,側面與底面所成的角為
,則它的外接球半徑R與內切球半徑
之比為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,在長方體
中,
,AB=2,點E在棱AB上移動.
(Ⅰ)證明:
;
(Ⅱ)當E為AB的中點時,求點A到面
的距離;
(Ⅲ)AE等于何值時,二面角
的大小為
.
查看答案和解析>>