【題目】已知拋物線,直線)與交于兩點(diǎn),的中點(diǎn),為坐標(biāo)原點(diǎn).

1)求直線斜率的最大值;

2)若點(diǎn)在直線上,且為等邊三角形,求點(diǎn)的坐標(biāo).

【答案】1;(2

【解析】

解法一:(1)設(shè)兩點(diǎn)坐標(biāo),將直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系、根的判別式、中點(diǎn)坐標(biāo)公式求出的坐標(biāo),最后根據(jù)斜率公式,結(jié)合基本不等式進(jìn)行求解即可;

2)利用弦長公式求出等邊三角形的邊長,最后利用等邊三角形的性質(zhì),得到方程,求解方程即可求出點(diǎn)的坐標(biāo).

解法二:(1)設(shè)出兩點(diǎn)的坐標(biāo),根據(jù)點(diǎn)在拋物線上,得到兩個(gè)方程,再利用兩點(diǎn)在直線上、中點(diǎn)坐標(biāo)公式求出的坐標(biāo),最后根據(jù)斜率公式,結(jié)合基本不等式進(jìn)行求解即可;

2)將直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系、根的判別式、兩點(diǎn)間距離公式求出等邊三角形的邊長,最后利用等邊三角形的性質(zhì),得到方程,求解方程即可求出點(diǎn)的坐標(biāo).

解法一:(1)設(shè)

,消去得,,

所以

因?yàn)?/span>的中點(diǎn),

所以的坐標(biāo)為,即

又因?yàn)?/span>,所以,

(當(dāng)且僅當(dāng),即等號(hào)成立.)

所以的斜率的最大值為;

2)由(1)知,

,

,

因?yàn)?/span>為等邊三角形,所以,

所以,

所以,所以,解得

,所以

,直線的方程為,即,

所以時(shí),,

所以所求的點(diǎn)的坐標(biāo)為

解法二:(1)設(shè),

因?yàn)?/span>的中點(diǎn),且直線,

所以因?yàn)?/span>,,兩個(gè)等式相減得:

所以所以

所以,

又因?yàn)?/span>,所以,

(當(dāng)且僅當(dāng),即等號(hào)成立.)

所以的斜率的最大值為

2)由,消去

所以

,

由(1)知,的中點(diǎn)的坐標(biāo)為

所以線段的垂直平分線方程為:

,得線段的垂直平分線與直線交點(diǎn)坐標(biāo)為

所以

因?yàn)?/span>為等邊三角形,所以,

所以

所以,所以,解得

因?yàn)?/span>所以,

,直線的方程為,即,

所以時(shí),,

所以所求的點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年新年伊始,新型冠狀病毒來勢(shì)洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長們的贊同.各地學(xué)校開展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛國教育,擬開設(shè)國學(xué)課,為了了解學(xué)生喜歡國學(xué)是否與性別有關(guān),該學(xué)校對(duì)100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡國學(xué)

不喜歡國學(xué)

合計(jì)

男生

20

50

女生

10

合計(jì)

100

1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡國學(xué)與性別有關(guān)系?

2)針對(duì)問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長,求選出的兩人均為女生的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角、的對(duì)邊分別為、,且

(Ⅰ)求

(Ⅱ)若,,如圖,為線段上一點(diǎn),且,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,圓經(jīng)過橢圓C的左、右焦點(diǎn)

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若AB,DE是橢圓C上不同四點(diǎn)(其中點(diǎn)D在第一象限),且,直線,關(guān)于直線對(duì)稱,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的左頂點(diǎn)斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.

1)求橢圓的離心率;

2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,若的方向是沿方向繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角得到的,則稱經(jīng)過一次變換得到.已知向量經(jīng)過一次變換后得到,經(jīng)過一次變換后得到,如此下去,經(jīng)過一次變換后得到,設(shè),則__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, ,且 交于點(diǎn), 上任意一點(diǎn).

(1)求證: ;

(2)已知二面角的余弦值為,若的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,已知橢圓的離心率為,且以線段為直徑的圓被直線所截的弦長為

1)求橢圓的方程;

2)記橢圓的右焦點(diǎn)為,過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn).若線段的垂直平分線與軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn),.

1)求證:平面

2)若異面直線所成角為,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案