【題目】設(shè)橢圓的左頂點為,右頂點為,已知橢圓的離心率為,且以線段為直徑的圓被直線所截的弦長為

1)求橢圓的方程;

2)記橢圓的右焦點為,過點且斜率為的直線交橢圓于兩點.若線段的垂直平分線與軸交于點,求的取值范圍.

【答案】1;(2

【解析】

(1)利用點到直線的距離公式和圓的弦長公式即可求解.

(2)設(shè)直線的方程為,聯(lián)立方程組設(shè)

,利用韋達(dá)定理,即可得出的中點為,然后,利用線段的垂直平分線與軸交于點,即可求解

解:(1)以線段為直徑的圓的圓心為,半徑,圓心到直線的距離為,

直線被圓截的弦長為,解得,

又橢圓的離心率為,所以,

所以,橢圓的方程為

2)依題意,,直線的方程為

聯(lián)立方程組消去并整理得

設(shè)、,故,,

設(shè)的中點為,則

因為線段的垂直平分線與軸交于點,

①當(dāng)時,那么;

②當(dāng)時,,即

解得

因為,所以,,即

綜上,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)證明:;

2)若當(dāng)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線)與交于兩點,的中點,為坐標(biāo)原點.

1)求直線斜率的最大值;

2)若點在直線上,且為等邊三角形,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x+1).

(1)0<f(1-2x)-f(x)<1,求實數(shù)x的取值范圍;

(2)g(x)是以2為周期的偶函數(shù),且當(dāng)0≤x≤1時,有g(x)=f(x),當(dāng)x∈[1,2]時,求函數(shù)y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中中,是邊長為的等邊三角形,底面為直角梯形,,,

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓上頂點為A,右焦點為F,直線與圓相切,其中.

1)求橢圓的方程;

2)不過點A的動直線l與橢圓C相交于P,Q兩點,且,證明:動直線l過定點,并且求出該定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在六棱錐中,底面是邊長為的正六邊形,.

1)證明:平面平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下統(tǒng)計表和分布圖取自《清華大學(xué)2019年畢業(yè)生就業(yè)質(zhì)量報告》.

則下列選項錯誤的是(

A.清華大學(xué)2019年畢業(yè)生中,大多數(shù)本科生選擇繼續(xù)深造,大多數(shù)碩士生選擇就業(yè)

B.清華大學(xué)2019年畢業(yè)生中,碩士生的就業(yè)率比本科生高

C.清華大學(xué)2019年簽三方就業(yè)的畢業(yè)生中,本科生的就業(yè)城市比碩士生的就業(yè)城市分散

D.清華大學(xué)2019年簽三方就業(yè)的畢業(yè)生中,留北京人數(shù)超過一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若的極大值點,求的取值范圍;.

2)當(dāng)時,判斷軸交點個數(shù),并給出證明.

查看答案和解析>>

同步練習(xí)冊答案