如圖,在平面直角坐標(biāo)系中,點,直線.設(shè)圓的半徑為,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
(1)y=0或;(2)0≤a≤

試題分析:(1)先求出圓心坐標(biāo),可得圓的方程,再設(shè)出切線方程,利用點到直線的距離公式,即可求得切線方程;(2)設(shè)出點C,M的坐標(biāo),利用MA=2MO,尋找坐標(biāo)之間的關(guān)系,進一步將問題轉(zhuǎn)化為圓與圓的位置關(guān)系,即可得出結(jié)論.
解:(1)聯(lián)立:,得圓心為:C(3,2).
設(shè)切線為:,d=,得:
故所求切線為:.                    5′
(2)設(shè)點M(x,y),由,知:
化簡得:,即:點M的軌跡為以(0,1)為圓心,2為半徑的圓,可記為圓D.
又因為點在圓上,故圓C圓D的關(guān)系為相交或相切.
故:1≤|CD|≤3,其中
解之得:0≤a≤.                             5′
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓O的直徑AB=8,圓周上過點C的切線與BA的延長線交于點E,過點B作AC的平行線交EC的延長線于點P.

(1)求證:BC2=AC·BP;
(2)若EC=2,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(5分)(2011•重慶)過原點的直線與圓x2+y2﹣2x﹣4y+4=0相交所得的弦長為2,則該直線的方程為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求過點P(,且被圓C:截得的弦長等于8的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點,動點P 滿足:|PA|=2|PB|.
(1)若點P的軌跡為曲線,求此曲線的方程;
(2)若點Q在直線l1: x+y+3=0上,直線l2經(jīng)過點Q且與曲線只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓相交所得線段的長度為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓心在x軸上、半徑為的圓O位于y軸左側(cè),且與直線x+2y=0相切,則圓O的方程是(  )
A.(x-)2+y2=5 B.(x+)2+y2=5
C.(x-5)2+y2=5 D.(x+5)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓,則圓心的坐標(biāo)是            ;若直線與圓有兩個不同的交點,則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

由直線上的點向圓引切線,則切線長的最小值為___________.

查看答案和解析>>

同步練習(xí)冊答案