【題目】已知橢圓C:的焦距為,且C過點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)分別是橢圓C的下頂點(diǎn)和上頂點(diǎn),P是橢圓上異于、的任意一點(diǎn),過點(diǎn)P作軸于M,N為線段PM的中點(diǎn),直線與直線交于點(diǎn)D,E為線段的中點(diǎn),O為坐標(biāo)原點(diǎn),則是否為定值,若是,請求出定值;若不是,請說明理由.

【答案】(1)(2)見解析

【解析】

(Ⅰ)由焦距為,得,由橢圓過點(diǎn),得,再由a2b2+c2,解得a2,b1,由此能求出橢圓C的方程;

(Ⅱ)設(shè)Px0,y0),x00,則M0y0),,由此能求出直線B2N的方程,令y=﹣1,得,由B20,﹣1),E為線段B1D的中點(diǎn),得,從而,,由此能證明

(1)由題意各焦距為,∴,又∵橢圓過點(diǎn),

∴代入橢圓方程得,∵,解得,,

故所求橢圓C的方程是;

(2)證明:設(shè),則,

∵點(diǎn)P在橢圓C上,,即,

,∴直線的方程為,

,得,∴,

,E為線段的中點(diǎn),∴

,,

.

,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù),.為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線y=a分別與直線y=2x-3,曲線y=ex-xx≥0)交于點(diǎn)A,B,則|AB|的最小值為( 。

A. B. C. eD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體AMDCNB是由兩個完全相同的四棱錐構(gòu)成的幾何體,這兩個四棱錐的底面ABCD為正方形,,平面平面ABCD.

(1)證明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方為 (為參數(shù)),為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求直線和曲線的極坐標(biāo)方程;

(2)設(shè),,為直線與曲線的兩個交點(diǎn),的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學(xué)的平均成績;(精確到個位)

(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學(xué)成績近似服從正態(tài)分布,約為),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學(xué)成績能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(ⅰ)估計本次檢測成績達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績大約是多少分?(精確到個位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知傾斜角為的直線過點(diǎn)和點(diǎn)在第一象限,;

1)求點(diǎn)的坐標(biāo);

2)若直線與兩平行直線,相交于兩點(diǎn),且,求實(shí)數(shù)的值;

3)對于平面上任一點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動時,稱的最小值為與線段的距離,試求點(diǎn),到線段的距離關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)的直線被曲線截得的弦長為2,則直線的方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形,均為正方形,點(diǎn)M的中點(diǎn),點(diǎn)H在線段上,且與平面所成角的正弦值為.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案