【題目】若直線y=a分別與直線y=2x-3,曲線y=ex-x(x≥0)交于點A,B,則|AB|的最小值為( 。
A. B. C. eD.
【答案】B
【解析】
設A(x1,a),B(x2,a),建立方程關(guān)系用x1表示x2,則|AB|=x1﹣x2,構(gòu)造函數(shù)求函數(shù)的導數(shù),研究函數(shù)的最值即可.
作出兩個曲線的圖象如圖,
設A(x1,a),B(x2,a),則x1>x2,
則2x1﹣3=e,即x1(e+3),
則|AB|=(e+3)(﹣3+e3),
設f(x)(ex﹣3x+3),x≥0,
函數(shù)的導數(shù)f′(x)(﹣3+ex),
由f′(x)>0得x>ln3,f(x)為增函數(shù),
由f′(x)<0得0≤x<ln3,f(x)為減函數(shù),
即當x=ln3時,f(x)取得最小值,最小值為f(ln3)(3+3﹣3ln3)=3ln3,
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,是上一點,且.
(1)求的方程;
(2)過點的直線與拋物線相交于兩點,分別過點兩點作拋物線的切線,兩條切線相交于點,點關(guān)于直線的對稱點,判斷四邊形是否存在外接圓,如果存在,求出外接圓面積的最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修:坐標系與參數(shù)方程選講.
在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線
(為參數(shù),實數(shù)). 在以為極點, 軸的正半軸為極軸的極坐標系中,射線與交于兩點,與交于兩點. 當時, ;當時, .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為6,離心率為.
(1)求橢圓C的標準方程;
(2)設橢圓C的左右焦點分別為,,左右頂點分別為A,B,點M,N為橢圓C上位于x軸上方的兩點,且,直線的斜率為,記直線AM,BN的斜率分別為,試證明:的值為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:過點,離心率為.
(1)求橢圓C的標準方程;
(2)設F1,F2分別為橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同兩點M,N,記△F1MN的內(nèi)切圓的面積為S,求當S取最大值時直線l的方程,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的焦距為,且C過點.
(1)求橢圓C的方程;
(2)設、分別是橢圓C的下頂點和上頂點,P是橢圓上異于、的任意一點,過點P作軸于M,N為線段PM的中點,直線與直線交于點D,E為線段的中點,O為坐標原點,則是否為定值,若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com