已知三點(diǎn)

(1)求以F1F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)P、F1F2關(guān)于直線y=x的對稱點(diǎn)分別為,求以為焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

(1)由題意,可設(shè)所求橢圓的標(biāo)準(zhǔn)方程為(ab>0),其半焦距c=6.

2a=|PF1|+|PF2|=.

a=,b2=a2-c2=45-36=9,所以所求方程為.

(2)點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)關(guān)于直線y=x的對稱點(diǎn)分別為P′(2,5)、F1(0,-6)、F2(0,6).

設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為(a1>0,b1>0).

由題意知,半焦距c1=6,

2a1=||PF1|-| PF2||=|-|=4.

a1=2,=36-20=16.所以所求方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知三點(diǎn)A(-1,0),B(1,0),C(-1,
3
2
),以A、B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C.
(I)求橢圓的方程;
(II)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線l與橢圓交于不同兩點(diǎn)M、N,使(
DM
+
DN
)•
MN
=0
?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由;
(III)若對于y軸上的點(diǎn)P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點(diǎn)M、N,使(
PM
+
PN
)•
MN
=0
,試求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,已知三點(diǎn)A(-1,0),B(1,0),C(-1,
3
2
);以A、B為焦點(diǎn)的橢圓經(jīng)過C點(diǎn),
(1)求橢圓方程;
(2)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線l,與橢圓交于不同的兩點(diǎn)M、N,使(
PM
+
PN
)•
MN
=0?
若存在.求出直線l斜率的取值范圍;
(3)對于y軸上的點(diǎn)P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點(diǎn)M、N,使(
PM
+
PN
)•
MN
=0,試求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)P(
5
2
,-
3
2
)
、A(-2,0)、B(2,0).(1)求以A、B為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;(2)求以A、B為頂點(diǎn)且以(1)中橢圓左、右頂點(diǎn)為焦點(diǎn)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),直線l過點(diǎn)A(a,0)和
B(0,b).
(1)以AB為直徑作圓M,連接MO并延長,與橢圓C的第三象限部分交于N,若直線NB是圓M的切線,求橢圓的離心率;
(2)已知三點(diǎn)D(4,0),E(0,3),G(4,3),若圓M與△DEG恰有一個公共點(diǎn),求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案