A. | $(\frac{{{e^2}+1}}{e},+∞)$ | B. | $(-∞,-\frac{{{e^2}+1}}{e})$ | C. | $(-\frac{{{e^2}+1}}{e},-2)$ | D. | $(2,\frac{{{e^2}+1}}{e})$ |
分析 函數(shù)f(x)=|xex|化成分段函數(shù),通過求導(dǎo)分析得到函數(shù)f(x)在(0,+∞)上為增函數(shù),在(-∞,-1)上為增函數(shù),在(-1,0)上為減函數(shù),求得函數(shù)f(x)在(-∞,0)上,當(dāng)x=-1時有一個最大值 $\frac{1}{e}$,所以,要使方程f2(x)+tf(x)+1=0(t∈R)有四個實(shí)數(shù)根,f(x)的值一個要在(0,$\frac{1}{e})$,內(nèi),一個在($\frac{1}{e}$,+∞)內(nèi),然后運(yùn)用二次函數(shù)的圖象及二次方程根的關(guān)系列式求解t的取值范圍.
解答 解:f(x)=|xex|=$\left\{\begin{array}{l}{x{e}^{x}…(x≥0)}\\{-x{e}^{x}…(x<0)}\end{array}\right.$
當(dāng)x≥0時,f′(x)=ex+xex≥0恒成立,所以f(x)在[0,+∞)上為增函數(shù);
當(dāng)x<0時,f′(x)=-ex-xex=-ex(x+1),
由f′(x)=0,得x=-1,當(dāng)x∈(-∞,-1)時,f′(x)=-ex(x+1)>0,f(x)為增函數(shù),
當(dāng)x∈(-1,0)時,f′(x)=-ex(x+1)<0,f(x)為減函數(shù),
所以函數(shù)f(x)=|xex|在(-∞,0)上有一個最大值為f(-1)=-(-1)e-1=$\frac{1}{e}$,
要使方程f2(x)-f(x)+1=0(t∈R)有四個實(shí)數(shù)根,
令f(x)=m,則方程m2+tm+1=0應(yīng)有兩個不等根,且一個根在(0,$\frac{1}{e}$),一個根在($\frac{1}{e},+∞)$內(nèi).
再令g(m)=m2-m+1,因?yàn)間(0)=1>0,則只需g($\frac{1}{e}$)<0,即$(\frac{1}{e})^{2}-\frac{1}{e}•t+1<0$
t>$\frac{{e}^{2}+1}{e}$.
故選:A.
點(diǎn)評 本題考查了根的存在性及根的個數(shù)的判斷,考查了利用函數(shù)的導(dǎo)函數(shù)分析函數(shù)的單調(diào)性,考查了學(xué)生分析問題和解決問題的能力,解答此題的關(guān)鍵是分析出方程f2(x)-f(x)+1=0(t∈R)有四個實(shí)數(shù)根時f(x)的取值情況,屬于中高檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}<\frac{1}$ | B. | |a|>|b| | C. | $\frac{a}>1$ | D. | 2a>2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 800 | B. | 3 600 | C. | 4 320 | D. | 5 040 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-1,1) | C. | (-∞,-1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | [0,2] | C. | {0,1,2} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com