【題目】某大型科學(xué)競(jìng)技真人秀節(jié)目挑選選手的方式為:不但要對(duì)選手的空間感知、照相式記憶能力進(jìn)行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為入圍學(xué)生,分?jǐn)?shù)小于120分為未入圍學(xué)生.已知男生入圍24人,女生未入圍80人.

1)根據(jù)題意,填寫下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%以上的把握認(rèn)為腦力測(cè)試后是否為入圍學(xué)生與性別有關(guān);

性別

入圍人數(shù)

未入圍人數(shù)

總計(jì)

男生

女生

總計(jì)

2)用分層抽樣的方法從入圍學(xué)生中隨機(jī)抽取11名學(xué)生,求這11名學(xué)生中男、女生人數(shù);若抽取的女生的腦力測(cè)試分?jǐn)?shù)各不相同(每個(gè)人的分?jǐn)?shù)都是整數(shù)),分別求這11名學(xué)生中女生測(cè)試分?jǐn)?shù)平均分的最小值.

附:,其中

【答案】1)見解析,沒有以上的把握認(rèn)為腦力測(cè)試后是否為入圍學(xué)生與性別有關(guān);(2)女生5人,男生6人,122.

【解析】

(1)根據(jù)題意,填寫列聯(lián)表.根據(jù)參考公式,計(jì)算的觀測(cè)值,再根據(jù)臨界值表,即得結(jié)論;

2)根據(jù)分層抽樣原理計(jì)算被抽到的女生人數(shù),即得被抽到的男生人數(shù).根據(jù)題意,被抽到的女生測(cè)試分?jǐn)?shù)的平均分最小時(shí),這5名女生的測(cè)試分?jǐn)?shù)分別為,即可求平均分的最小值.

1)填寫列聯(lián)表如下:

性別

入圍人數(shù)

未入圍人數(shù)

總計(jì)

男生

24

76

100

女生

20

80

100

總計(jì)

44

156

200

的觀測(cè)值

所以沒有以上的把握認(rèn)為腦力測(cè)試后是否為入圍學(xué)生與性別有關(guān).

2)在這11名學(xué)生中,被抽到的女生人數(shù)為(人),

被抽到的男生人數(shù)為(人)或(人).

因?yàn)槿雵姆謹(jǐn)?shù)不低于120分,且每個(gè)女生的測(cè)試分?jǐn)?shù)各不相同,每個(gè)人的分?jǐn)?shù)都是整數(shù).

所以這11名學(xué)生中女生測(cè)試分?jǐn)?shù)的平均分的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出停課不停學(xué)的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān);

2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于5小時(shí)和線上學(xué)習(xí)時(shí)間不足5小時(shí)的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為的菱形中,,現(xiàn)沿對(duì)角線翻折到的位置得到四面體,如圖所示.已知.

1)求證:平面平面;

2)若是線段上的點(diǎn),且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過右焦點(diǎn)F的直線LC相交于AB兩點(diǎn),當(dāng)L的斜率為1時(shí),坐標(biāo)原點(diǎn)OL的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)在C上是否存在點(diǎn)P,使得當(dāng)LF轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與L的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以塔底座的邊作方形.作方圓圖,會(huì)發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面向量共線的充要條件是(

A.

B.,兩向量中至少有一個(gè)為零向量

C.λR,

D.存在不全為零的實(shí)數(shù)λ1,λ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】金剛石是碳原子的一種結(jié)構(gòu)晶體,屬于面心立方晶胞(晶胞是構(gòu)成晶體的最基本的幾何單元),即碳原子處在立方體的個(gè)頂點(diǎn),個(gè)面的中心,此外在立方體的對(duì)角線的處也有個(gè)碳原子,如圖所示(綠色球),碳原子都以共價(jià)鍵結(jié)合,原子排列的基本規(guī)律是每一個(gè)碳原子的周圍都有個(gè)按照正四面體分布的碳原子.設(shè)金剛石晶胞的棱長(zhǎng)為,則正四面體的棱長(zhǎng)為__________;正四面體的外接球的體積是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年來,我國(guó)城市基礎(chǔ)設(shè)施發(fā)生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實(shí)行的是早九晚五的工作時(shí)間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時(shí)間Z1(單位:分鐘)服從正態(tài)分布N33,42),下車后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時(shí)間Z2(單位:分鐘)服從正態(tài)分布N44,22),從地鐵站步行到單位需要5分鐘.現(xiàn)有下列說法:①若800出門,則乘坐公交一定不會(huì)遲到;②若802出門,則乘坐公交和地鐵上班遲到的可能性相同;③若806出門,則乘坐公交比地鐵上班遲到的可能性大;④若812出門,則乘坐地鐵比公交上班遲到的可能性大.則以上說法中正確的序號(hào)是_____.

參考數(shù)據(jù):若ZNμ,σ2),則PμσZμ+σ)=0.6826,PμZμ+)=0.9544PμZμ+)=0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項(xiàng)數(shù)學(xué)競(jìng)賽考試共四道題,考察內(nèi)容分別為代數(shù)、幾何、數(shù)論、組合,已知前兩題每題滿分40分,后兩題每題滿分60分,題目難度隨題號(hào)依次遞增,已知學(xué)生甲答題時(shí),若該題會(huì)做則必得滿分,若該題不會(huì)做則不作答得0分,通過對(duì)學(xué)生甲以往測(cè)試情況的統(tǒng)計(jì),得到他在同類模擬考試中各題的得分率,如表所示:

假設(shè)學(xué)生甲每次考試各題的得分相互獨(dú)立.

1)若此項(xiàng)競(jìng)賽考試四道題的順序依次為代數(shù)、幾何、數(shù)論、組合,試預(yù)測(cè)學(xué)生甲考試得160分的概率;

2)學(xué)生甲研究該項(xiàng)競(jìng)賽近五年的試題發(fā)現(xiàn)第1題都是代數(shù)題,于是他在賽前針對(duì)代數(shù)版塊進(jìn)行了強(qiáng)化訓(xùn)練,并取得了很大進(jìn)步,現(xiàn)在,只要代數(shù)題是在試卷第1、2題的位置,他就一定能答對(duì),若今年該項(xiàng)數(shù)學(xué)競(jìng)賽考試四道題的順序依次為代數(shù)、數(shù)論、組合、幾何,試求學(xué)生甲此次考試得分X的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案