【題目】已知直線

(1)系數(shù)為什么值時(shí),方程表示通過(guò)原點(diǎn)的直線;

(2)系數(shù)滿(mǎn)足什么關(guān)系時(shí)與坐標(biāo)軸都相交;

(3)系數(shù)滿(mǎn)足什么條件時(shí)只與x軸相交;

(4)系數(shù)滿(mǎn)足什么條件時(shí)是x軸;

(5)設(shè)為直線上一點(diǎn),證明:這條直線的方程可以寫(xiě)成

【答案】見(jiàn)解析

【解析】

采用“代點(diǎn)法”,原點(diǎn)坐標(biāo)滿(mǎn)足方程,即可求出結(jié)果

斜率存在且不為,所以乘積不等于

斜率不存在,

軸即,則,

采用“代點(diǎn)法”,得到,再將其代入到原方程整理可得,得證

:(1)采用代點(diǎn)法,將(0,0)代入中得C=0,A、B不同為零

(2)直線與坐標(biāo)軸都相交,說(shuō)明橫縱截距均存在設(shè),得;設(shè),得均成立,因此系數(shù)

(3)直線只與x軸相交,就是指與y軸不相交——平行、重合均可因此直線方程將化成的形式,故為所求

(4)x軸的方程為,直線方程即可.(注意B可以不為1,即也可以等價(jià)轉(zhuǎn)化為.)

(5)運(yùn)用代點(diǎn)法”. 在直線上,

滿(mǎn)足方程, ,

可化為,即,得證

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 底面 , , 是棱上一點(diǎn).

I)求證:

II)若, 分別是, 的中點(diǎn),求證: 平面

III)若二面角的大小為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次商貿(mào)交易會(huì)上,商家在柜臺(tái)開(kāi)展促銷(xiāo)抽獎(jiǎng)活動(dòng),甲、乙兩人相約同一天上午去該柜臺(tái)參與抽獎(jiǎng).

(1)若抽獎(jiǎng)規(guī)則是從一個(gè)裝有個(gè)紅球和 個(gè)白球的袋中一次取出個(gè)球,當(dāng)兩個(gè)球同色時(shí)則中獎(jiǎng),求中獎(jiǎng)概率;

(2)若甲計(jì)劃在之間趕到,乙計(jì)劃在之間趕到,求甲比乙提前到達(dá)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C.

1)若直線過(guò)定點(diǎn),且與圓C相切,求方程;

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線C1的極坐標(biāo)方程ρ2cos2θ=8,曲線C2的極坐標(biāo)方程為θ= ,曲線C1 , C2相交于A,B兩點(diǎn).以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系,已知直線l的參數(shù)方程為 (t為參數(shù)).
(1)求A,B兩點(diǎn)的極坐標(biāo);
(2)曲線C1與直線l分別相交于M,N兩點(diǎn),求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,.

1求數(shù)列的通項(xiàng)公式;

2設(shè),記數(shù)列的前項(xiàng)和.若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).

①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

②已知點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)滿(mǎn)足以下兩個(gè)條件的有窮數(shù)列, , , 期待數(shù)列

;

.

)分別寫(xiě)出一個(gè)單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.

)記期待數(shù)列的前項(xiàng)和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下,觀察圖形,回答下列問(wèn)題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(分及以上為及格)和平均數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案