【題目】如圖,矩形ABCD中,AB=2AD=2,E為邊AB的中點,將△ADE沿直線DE翻折成△DE,使平面DE⊥平面BCDE,若M為線段C的中點,下面四個命題中不正確的是( )
A.BM平面DEB.CE⊥平面DE
C.DEBMD.平面CD⊥平面CE
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐A-BCDE,其中AC=BC=2,AC⊥BC,CD//BE且CD=2BE,CD⊥平面ABC,F為AD的中點.
(1)求證:EF//平面ABC;
(2)設M是AB的中點,若DM與平面ABC所成角的正切值為,求平面ACD與平面ADE夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線l的方程為(a﹣1)x+y+a+3=0,(a∈R).
(1)若直線l在兩坐標軸上截距的絕對值相等,求直線l的方程;
(2)若直線l不經(jīng)過第一象限,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得對恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy內(nèi),點()在橢圓E:(a>0,b>0),橢圓E的離心率為,直線l過左焦點F且與橢圓E交于A、B兩點
(1)求橢圓E的標準方程;
(2)若動直線l與x軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“讀書可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣”,2018年第一期中國青年閱讀指數(shù)數(shù)據(jù)顯示,從供給的角度,文學閱讀域是最多的,遠遠超過了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學生進行了在暑假閱讀內(nèi)容和閱讀時間方面的調(diào)查,得到數(shù)據(jù)如表:
文學閱讀人數(shù) | 非文學閱讀人數(shù) | 調(diào)查人數(shù) | |
理科生 | 130 | ||
文科生 | 45 | ||
合計 |
(1)先完成上面的表格,并判斷能否有90%的把握認為學生所學文理與閱讀內(nèi)容有關?
(2從300名被調(diào)查的學生中,隨機進取30名學生,整理其日平均閱讀時間(單位:分鐘)如表:
閱讀時間 | |||||
男生人數(shù) | 2 | 4 | 3 | 5 | 2 |
女生人數(shù) | 1 | 3 | 4 | 3 | 3 |
試估計這30名學生日閱讀時間的平均值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)從(2)中日均閱讀時間不低于120分鐘的學生中隨機選取2人介紹閱讀心得,求這兩人都是女生的概率.
參考公式: ,其中.
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,直線與的兩個交點間的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過作滿足,設與的上半部分分別交于兩點,求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com