【題目】已知A{x|x24ax+3a20a0}B{x|x2x6≥0},若xAxB的必要不充分條件,求實數(shù)a的取值范圍.

【答案】0,1).

【解析】

根據(jù)一元二次不等式的解法,求得集合A{x|xax3a,a0}B{x|x≥3x2},

再由xAxB的必要不充分條件,即集合B是集合A的真子集,列出不等式組,即可求解.

由題意,集合A{x|x24ax+3a20,a0}{x|xax3a,a0}

B{x|x+2)(x3≥0}{x|x≥3x2},

xAxB的必要不充分條件,即集合B是集合A的真子集,

則滿足,解得0a1

故實數(shù)a的取值范圍是(0,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源租賃汽車”.每次租車收費的標(biāo)準(zhǔn)由兩部分組成:里程計費:1元/公里;時間計費:元/分.已知陳先生的家離上班公司公里,每天上、下班租用該款汽車各一次.一次路上開車所用的時間記為(分),現(xiàn)統(tǒng)計了50次路上開車所用時間,在各時間段內(nèi)頻數(shù)分布情況如下表所示

將各時間段發(fā)生的頻率視為概率,一次路上開車所用的時間視為用車時間,范圍為分.

(1)估計陳先生一次租用新能源租賃汽車所用的時間不低于分鐘的概率;

(2)若公司每月發(fā)放元的交通補助費用,請估計是否足夠讓陳先生一個月上下班租用新能源租賃汽車(每月按天計算),并說明理由.(同一時段,用該區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知項數(shù)為項的有窮數(shù)列,若同時滿足以下三個條件:

,為正整數(shù);或1,其中,3,,

任取數(shù)列中的兩項,,剩下的項中一定存在兩項,滿足,則稱數(shù)列數(shù)列.

若數(shù)列是首項為1,公差為1,項數(shù)為6項的等差數(shù)列,判斷數(shù)列是否是數(shù)列,并說明理由.

當(dāng)時,設(shè)數(shù)列中1出現(xiàn)次,2出現(xiàn)次,3出現(xiàn)次,其中,,

求證:,;

當(dāng)時,求數(shù)列中項數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線l的極坐標(biāo)方程為,

將圓C的參數(shù)方程化為極坐標(biāo)方程;

設(shè)點A的直角坐標(biāo)為,射線l與圓C交于點不同于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考改革是教育體制改革中的重點領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會極其關(guān)注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學(xué)、外語,“”指考生根據(jù)本人興趣特長和擬報考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)求小明物理成績的最后得分;

(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦距為短半軸的長為2,過點P(-2,1)且斜率為1的直線l與橢圓C交于AB兩點

(1)求橢圓C的方程;

(2)求弦AB的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個部門實習(xí),要求每個部門至少安排1人,其中甲大學(xué)生不能安排到部門工作,安排方法有______用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線方程為、分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于,兩點.

1)求橢圓的標(biāo)準(zhǔn)方程.

2)記、的面積分別為,若,求的值;

3)設(shè)線段的中點為,直線與右準(zhǔn)線相交于點,記直線、、的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)過點且傾斜角為的直線和曲線交于兩點,,求的值.

查看答案和解析>>

同步練習(xí)冊答案