【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)過點(diǎn)且傾斜角為的直線和曲線交于兩點(diǎn),,求的值.
【答案】(1) (2)
【解析】
(1)由,可得,由互化公式可得直角坐標(biāo)方程;
(2)可以利用直線方程的點(diǎn)斜式將直線方程寫出,之后與橢圓方程聯(lián)立,消元利用弦長公式求得結(jié)果,也可以根據(jù)條件,寫出直線的參數(shù)方程,結(jié)合參數(shù)的幾何意義,求得結(jié)果.
(1)將,代入,
得曲線的直角坐標(biāo)方程為.
即為曲線的直角坐標(biāo)方程. 由得,
(2)法1:依題意得直線,與橢圓聯(lián)立得,
即,
法2:依題意得直線,與橢圓聯(lián)立得,即,
法3:依題意得直線(為參數(shù)),與橢圓聯(lián)立得
,即,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|x2﹣4ax+3a2>0,a>0},B={x|x2﹣x﹣6≥0},若x∈A是x∈B的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,點(diǎn),.
(1)若線段的中垂線與圓相切,求實(shí)數(shù)的值;
(2)過直線上的點(diǎn)引圓的兩條切線,切點(diǎn)為,若,則稱點(diǎn)為“好點(diǎn)”. 若直線上有且只有兩個(gè)“好點(diǎn)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二項(xiàng)式 的展開式.
(1)求展開式中含項(xiàng)的系數(shù);
(2)如果第項(xiàng)和第項(xiàng)的二項(xiàng)式系數(shù)相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主須為機(jī)動(dòng)車購買的險(xiǎn)種.若普通座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基本保費(fèi))是元,在下一年續(xù)保時(shí),實(shí)行費(fèi)率浮動(dòng)制,其保費(fèi)與上一年度車輛發(fā)生道路交通事故情況相聯(lián)系,具體浮動(dòng)情況如下表:
類型 | 浮動(dòng)因素 | 浮動(dòng)比率 |
上一年度未發(fā)生有責(zé)任的道路交通事故 | 下浮 | |
上兩年度未發(fā)生有責(zé)任的道路交通事故 | 下浮 | |
上三年度未發(fā)生有責(zé)任的道路交通事故 | 下浮 | |
上一年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | ||
上一年度發(fā)生兩次及以上有責(zé)任不涉及死亡的道路交通事故 | 上浮 | |
上三年度發(fā)生有責(zé)任涉及死亡的道路交通事故 | 上浮 |
據(jù)統(tǒng)計(jì),某地使用某一品牌座以下的車大約有輛,隨機(jī)抽取了輛車齡滿三年的該品牌同型號(hào)私家車的下一年續(xù)保情況,統(tǒng)計(jì)得到如下表格:
類型 | ||||||
數(shù)量 |
|
|
|
|
|
|
以這輛該品牌汽車的投保類型的頻率視為概率,按照我國《機(jī)動(dòng)車交通事故責(zé)任保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格為元.
(1)求得知,并估計(jì)該地本年度使用這一品牌座以下汽車交強(qiáng)險(xiǎn)費(fèi)大于元的輛數(shù);
(2)試估計(jì)該地使用該品牌汽車的一續(xù)保人本年度的保費(fèi)不超過元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,為的中點(diǎn).
(1)求證:∥平面;
(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主須為機(jī)動(dòng)車購買的險(xiǎn)種.若普通座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基本保費(fèi))是元,在下一年續(xù)保時(shí),實(shí)行費(fèi)率浮動(dòng)制,其保費(fèi)與上一年度車輛發(fā)生道路交通事故情況相聯(lián)系,具體浮動(dòng)情況如下表:
類型 | 浮動(dòng)因素 | 浮動(dòng)比率 |
上一年度未發(fā)生有責(zé)任的道路交通事故 | 下浮 | |
上兩年度未發(fā)生有責(zé)任的道路交通事故 | 下浮 | |
上三年度未發(fā)生有責(zé)任的道路交通事故 | 下浮 | |
上一年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | ||
上一年度發(fā)生兩次及以上有責(zé)任不涉及死亡的道路交通事故 | 上浮 | |
上三年度發(fā)生有責(zé)任涉及死亡的道路交通事故 | 上浮 |
某一機(jī)構(gòu)為了研究某一品牌座以下投保情況,隨機(jī)抽取了輛車齡滿三年的該品牌同型號(hào)私家車的下一年續(xù)保情況,統(tǒng)計(jì)得到如下表格:
類型 | ||||||
數(shù)量 |
|
|
|
|
|
|
以這輛該品牌汽車的投保類型的頻率視為概率.
(I)試估計(jì)該地使用該品牌汽車的一續(xù)保人本年度的保費(fèi)不超過元的概率;
(II)記為某家庭的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)小張三次射擊恰有兩次命中十環(huán)的概率,先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定2,4,6,8表示命中十環(huán),0,1,3,5,7,9表示未命中十環(huán),再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
321 421 292 925 274 632 802 478 598 663
531 297 396 021 406 318 235 113 507 965
據(jù)此估計(jì),小張三次射擊恰有兩次命中十環(huán)的概率為( )
A.0.30B.0.35C.0.40D.0.45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊)數(shù)據(jù):
單價(jià)(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:
(2)預(yù)計(jì)今后的銷售中,銷量(冊)與單價(jià)(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價(jià)應(yīng)定為多少元?
附:,,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com