(12分)已知雙曲線C的中心是原點,右焦點為F(,0),一條漸近線m:x+y=0,設(shè)過點A(-3,0)的直線l
(1)求雙曲線C的方程;
(2)若過原點的直線a∥l,且a與l的距離為,求k的值;
(3)證明:當(dāng)k>時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.
(1)-y2=1
(2)k=±
(3)略
【解析】(1)設(shè)雙曲線C的方程為x2-2y2=λ(λ>0),
∴λ+=3,解得λ=2. 雙曲線C的方程為-y2=1. (4分)
(2)直線l:kx-y+3k=0,直線a:kx-y=0.由題意,
得,解得k=±.(8分)
(3)證法一:設(shè)過原點且平行于l的直線b: kx-y=0,則直線l與b的距離d=,當(dāng)k>時,d>.(12分)
又雙曲線C的漸近線為x±y=0,
∴雙曲線C的右支在直線b的右下方,
∴雙曲線C右支上的任意點到直線l的距離大于.
故在雙曲線C的右支上不存在點Q,使之到直線l的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
2 |
6 |
| ||
2 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
A、y=±
| ||||
B、y=±x | ||||
C、x=±
| ||||
D、x=±
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。
已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設(shè)過點A的直線l的方向向量。
(1)求雙曲線C的方程;
(2)若過原點的直線,且a與l的距離為,求K的值;
(3)證明:當(dāng)時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設(shè)過點A的直線l的方向向量。
(1) 求雙曲線C的方程;
(2) 若過原點的直線,且a與l的距離為,求K的值;
(3) 證明:當(dāng)時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com