已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),在函數(shù)圖象上取不同兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為,試探究函數(shù)在Q點(diǎn)處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)時(shí)圖象是否存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.
(1)時(shí),函數(shù)上單調(diào)遞增;當(dāng),函數(shù)上單調(diào)遞增;在上單調(diào)遞減;(2)所以函數(shù)Q點(diǎn)處的切線與直線AB平行;
(3)圖象不存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.

試題分析:(1)求導(dǎo)即可知其單調(diào)性;(2)利用導(dǎo)數(shù)求出函數(shù)在點(diǎn)Q處的切線的斜率,再求出直線AB的斜率,可看出它們是相等的,所以函數(shù)在Q點(diǎn)處的切線與直線AB平行;
(3)設(shè),若滿足(2)中結(jié)論,則有
,化簡(jiǎn)得(*).如果這個(gè)等式能夠成立,則存在,如果這個(gè)等式不能成立,則不存在.設(shè),則*式整理得,問題轉(zhuǎn)化成該方程在上是否有解.再設(shè)函數(shù),下面通過導(dǎo)數(shù)即可知方程上是否有解,從而可確定函數(shù)是否滿足(2)中結(jié)論.
(1)由題知,
當(dāng)時(shí),,函數(shù)在定義域上單調(diào)遞增;
當(dāng),由解得,函數(shù)上單調(diào)遞增;在上單調(diào)遞減;                                             4分
(2),

所以函數(shù)Q點(diǎn)處的切線與直線AB平行;            .7分
(3)設(shè),若滿足(2)中結(jié)論,有
,即
   (*)               .9分
設(shè),則*式整理得,問題轉(zhuǎn)化成該方程在上是否有解; 11分
設(shè)函數(shù),則,所以函數(shù)單調(diào)遞增,即,即方程上無解,即函數(shù)不滿足(2)中結(jié)論    14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間;
(3)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x) 在它們的交點(diǎn)P(2,c)處有相同的切線(P為切點(diǎn)),求實(shí)數(shù)a,b的值;
(2)令h (x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)減區(qū)間為.
①求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a);
②若|h(x)|≤3在x∈[-2,0]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖像在x=1處的切線與直線垂直,則
實(shí)數(shù)的值為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn)  處切線的斜率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線y=ax2-ln x在點(diǎn)(1,a)處的切線平行于x軸,則a=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)y=f(x)的圖象在M(1,f(1))處的切線方程是+2,
則f(1)+f′(1)=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正四棱錐S—ABCD中,SA=2,那么當(dāng)該棱錐的體積最大時(shí),它的高為(  )
A.1B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則               

查看答案和解析>>

同步練習(xí)冊(cè)答案