某類種子每粒發(fā)芽的概率是90%,現(xiàn)播種該種子1000粒,對于沒有發(fā)芽的種子,每粒需再補種2粒,補種的種子數(shù)記為X,則X的數(shù)學(xué)期望與方差分別是(   )
A.100 90B.100 180C.200 180D.200 360
D

試題分析:由題意可知播種了1000粒,沒有發(fā)芽的種子數(shù)服從二項分布,即,而每粒需再補種2粒,補種的種子數(shù)記為X,故,則,.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某高校教授“統(tǒng)計初步”課程的教師隨機調(diào)查了選修該課的一些學(xué)生情況,
具體數(shù)據(jù)如下表:
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)
1312
718
為了判斷主修統(tǒng)計專業(yè)是否與性別有關(guān),此教師說:“我經(jīng)過計算,可以判定主修統(tǒng)計專業(yè)與性別有關(guān)系.”你認(rèn)為此教師的判斷錯誤的可能性為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在調(diào)查高中學(xué)生的近視情況中,某校高一年級145名男生中有60名近視,120名女生中有70名近視. 在檢驗這些高中學(xué)生眼睛近視是否與性別相關(guān)時,常采用的數(shù)據(jù)分析方法是(   )
A.期望與方差B.獨立性檢驗C.正態(tài)分布D.二項分布列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩人進(jìn)行乒乓球比賽,比賽采取五局三勝制,無論哪一方先勝三局則比賽結(jié)束,假定甲每局比賽獲勝的概率均為,則甲以3∶1的比分獲勝的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在15個村莊中有7個村莊交通不便,現(xiàn)從中任意選10個村莊,用ξ表示這10個村莊中交通不便的村莊數(shù),下列概率中等于的是(  )
A.P(ξ=2)B.P(ξ≤2)
C.P(ξ=4)D.P(ξ≤4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )
A.都不是一等品B.恰有1件一等品
C.至少有1件一等品 D.至多有1件一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{0,1,2,3},若|a-b|≤1,則稱甲、乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量



發(fā)電量最多可運行臺數(shù)
1
2
3
 
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從混有張假鈔的張百元鈔票中任意抽取張,將其中一張在驗鈔機上檢驗發(fā)現(xiàn)是假鈔,問這張都是假鈔的概率是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案