【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問題”:求作一個正方體,使它的體積等于已知立方體體積的2倍,倍立方問題可以利用拋物線(可尺規(guī)作圖)來解決,首先作一個通徑為其中正數(shù)為原立方體的棱長的拋物線,如圖,再作一個頂點與拋物線頂點重合而對稱軸垂直的拋物線,且與交于不同于點的一點,自點向拋物線的對稱軸作垂線,垂足為,可使以為棱長的立方體的體積為原立方體的2.

1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的標(biāo)準(zhǔn)方程;

(2)為使以為棱長的立方體的體積為原立方體的2倍,求拋物線的標(biāo)準(zhǔn)方程(只須以一個開口方向為例).

【答案】(1)(2)

【解析】試題分析:

(1)為原點, 軸正向建立平面直角坐標(biāo)系,結(jié)合拋物線的性質(zhì)可得拋物線的標(biāo)準(zhǔn)方程為.

(2)不妨設(shè)焦點位于y軸正半軸,結(jié)合題意計算可得拋物線方程為.

試題解析:

1)以為原點, 軸正向建立平面直角坐標(biāo)系,

由題意,拋物線的通徑為,所以標(biāo)準(zhǔn)方程為.

2)設(shè)拋物線,

又由題意, ,所以,代入

得: ,解得:

所以點代入

得: ,解得:

所以拋物線為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次足球比賽共12支球隊參加,分三個階段進行.

(1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊進行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;

(2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場交叉淘汰賽(每兩隊主客場各賽一場)決出勝者;

(3)決賽:兩個勝隊參加決賽一場,決出勝負.

問全程賽程共需比賽多少場?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為 (單位:元).

(1)寫出樓房每平方米的平均綜合費用關(guān)于建造層數(shù)的函數(shù)關(guān)系式;

(2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,的首項,且滿足,其中,設(shè)數(shù)列,的前項和分別為,

Ⅰ)若不等式對一切恒成立,求

Ⅱ)若常數(shù)且對任意的,恒有,求的值.

Ⅲ)在(Ⅱ)的條件下且同時滿足以下兩個條件:

。┤舸嬖谖ㄒ徽麛(shù)的值滿足;

恒成立.試問:是否存在正整數(shù),使得,若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題13)已知函數(shù)f(x) (a>0,x>0)

(1)求證:f(x)(0,+∞)上是單調(diào)遞增函數(shù);

(2)f(x)[,2]上的值域是[2],求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測量可知邊界萬米,萬米,萬米.

(1)請計算原棚戶區(qū)建筑用地的面積及的長;

(2)因地理條件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請在圓弧上設(shè)計一點,使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,MN是小圓的一條固定直徑的兩個端點。那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點MN在大圓內(nèi)所繪出的圖形大致是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動點是圓上任意一點,軸的垂線垂足為,若點在線段上,且滿足

(1)求點的軌跡的方程;

(2)設(shè)直線交于, 兩點,點坐標(biāo)為,若直線, 的斜率之和為定值3,求證:直線必經(jīng)過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2
(1)求證:|x1+x2|>2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案