二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,則該二面角的大小為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
如圖,正方體ABCDA1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是 (寫出所有正確命題的編號).
①當(dāng)0<CQ<時,S為四邊形;
②當(dāng)CQ=時,S為等腰梯形;
③當(dāng)CQ=時,S與C1D1的交點R滿足C1R=;
④當(dāng)<CQ<1時,S為六邊形;
⑤當(dāng)CQ=1時,S的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知結(jié)論:“在三邊長都相等的△ABC中,若D是BC的中點,G是△ABC外接圓的圓心,則=2”.若把該結(jié)論推廣到空間,則有結(jié)論:“在六條棱長都相等的四面體ABCD中,若M是△BCD的三邊中線的交點,O為四面體ABCD外接球的球心,則= .”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知三棱錐P-ABC的各頂點均在一個半徑為R的球面上,球心O在AB上,PO⊥平面ABC,,則三棱錐與球的體積之比為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
如圖所示,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為線段AA1,B1C上的點,則三棱錐D1-EDF的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知某一多面體內(nèi)接于球構(gòu)成一個簡單組合體,如果該組合體的正視圖、側(cè)視圖、俯視圖均如圖所示,且圖中的四邊形是邊長為2的正方形,則該球的表面積是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com