設(shè)橢圓 (a>b>0)的左頂點(diǎn)為A,若橢圓上存在一點(diǎn)P,使∠OPA= (O為原點(diǎn)),求橢圓離心率的取值范圍.
橢圓離心率的范圍是(,1).
如圖,設(shè)P(x,y),由∠OPA=知點(diǎn)P在以AO為直徑的圓上,
即.
聯(lián)立方程組消去y,得
(a2-b2)x2+a3x+a2b2=0.
解之,得x=-a或.
當(dāng)x=-a時(shí),P與A重合,不滿(mǎn)足題意,舍去.
故P點(diǎn)的橫坐標(biāo)為.
又∵,∴a2>2b2,即a2>2(a2-c2).
∴,.
又∵0<e<1,
∴1,即橢圓離心率的范圍是(,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分12分)設(shè)A(x,y)、B(x,y) 是橢圓(a > b > 0) 上的兩點(diǎn),, = (,),且滿(mǎn)足· = 0,橢圓的離心率e = ,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).(1)求橢圓的方程;(2)若存在斜率為k的直線(xiàn)AB過(guò)橢圓的焦點(diǎn)F(0,c)(c為半焦距),求直線(xiàn)AB的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇淮安范集中學(xué)高三第一次全真模擬數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分16分)
如圖,橢圓(a>b>0)的上、下兩個(gè)頂點(diǎn)為A、B,直線(xiàn)l:,點(diǎn)P是橢圓上異于點(diǎn)A、B的任意一點(diǎn),連接AP并延長(zhǎng)交直線(xiàn)l于點(diǎn)N,連接PB并延長(zhǎng)交直線(xiàn)l于點(diǎn)M,設(shè)AP所在的直線(xiàn)的斜率為,BP所在的直線(xiàn)的斜率為.若橢圓的離心率為,且過(guò)點(diǎn).
(1)求的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過(guò)定點(diǎn),
若過(guò)定點(diǎn),求出該定點(diǎn),如不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省唐山市高二第一學(xué)期期中考試文科數(shù)學(xué)試卷 題型:選擇題
設(shè)F1是橢圓(a>b>0)的一個(gè)焦點(diǎn),PQ是經(jīng)過(guò)另一個(gè)焦點(diǎn)F2的弦,則△PF1Q的周長(zhǎng)是( )
A.4a B.4b C.2a D.2b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二階段測(cè)試數(shù)學(xué)試卷 題型:解答題
(本題滿(mǎn)分16分)已知橢圓(a>b>0)
(1)當(dāng)橢圓的離心率,一條準(zhǔn)線(xiàn)方程為x=4 時(shí),求橢圓方程;
(2)設(shè)是橢圓上一點(diǎn),在(1)的條件下,求的最大值及相應(yīng)的P點(diǎn)坐標(biāo)。
(3)過(guò)B(0,-b)作橢圓(a>b>0)的弦,若弦長(zhǎng)的最大值不是2b,求橢圓離心率的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com