(本題滿分16分)已知橢圓(a>b>0)
(1)當(dāng)橢圓的離心率,一條準(zhǔn)線方程為x=4 時(shí),求橢圓方程;
(2)設(shè)是橢圓上一點(diǎn),在(1)的條件下,求的最大值及相應(yīng)的P點(diǎn)坐標(biāo)。
(3)過B(0,-b)作橢圓(a>b>0)的弦,若弦長的最大值不是2b,求橢圓離心率的取值范圍。
(1)
(2)
(3)
【解析】解:(1),橢圓方程為
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052100244621873770/SYS201205210027038281759660_DA.files/image005.png">在橢圓上,所以可設(shè),
則,,此時(shí),
相應(yīng)的P點(diǎn)坐標(biāo)為。
(3)設(shè)弦為BP,其中P(x,y),
=,
因?yàn)锽P的最大值不是2b,又,
所以f(y)不是在y=b時(shí)取最大值,而是在對稱軸處取最大值,
所以,所以,解得離心率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù)?(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)為實(shí)常數(shù)).
(I)當(dāng)時(shí),求函數(shù)在上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓:的離心率為,分別為橢圓的左、右焦點(diǎn),若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點(diǎn)時(shí),求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),。
(Ⅰ)求及的值;
(Ⅱ)求函數(shù)在上的解析式;
(Ⅲ)若關(guān)于的方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com