如圖,有一邊長(zhǎng)為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對(duì)稱軸,以線段的中點(diǎn)為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來(lái),使剩余的部分成為一個(gè)直角梯形.
(Ⅰ)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求陰影部分的邊緣線的方程;
(Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.
(I) .(Ⅱ)當(dāng)時(shí),可使剩余的直角梯形的面積最大,其最大值為.
解析試題分析:(I)以為原點(diǎn),直線為軸,建立如圖所示的直角坐標(biāo)系,
依題意
可設(shè)拋物線弧的方程為
∵點(diǎn)的坐標(biāo)為, ∴,
故邊緣線的方程為.
(Ⅱ)要使梯形的面積最大,則所在的直線必與拋物線弧相切,設(shè)切點(diǎn)坐標(biāo)為, ∵,
∴直線的的方程可表示為,即 , 由此可求得,.
, ,
設(shè)梯形的面積為,則
. ∴當(dāng)時(shí),
故的最大值為. 此時(shí).
答:當(dāng)時(shí),可使剩余的直角梯形的面積最大,其最大值為.
考點(diǎn):本題主要考查拋物線在實(shí)際問(wèn)題中的應(yīng)用以及二次函數(shù)的圖象和性質(zhì)。
點(diǎn)評(píng):解應(yīng)用題常用的方法是依據(jù)題意建立等量關(guān)系,構(gòu)造數(shù)學(xué)模型利用函數(shù)的性質(zhì)進(jìn)行求解,而有些應(yīng)用題有明顯的幾何意義,可以考慮利用解析法根據(jù)題意建立適當(dāng)?shù)淖鴺?biāo)系,構(gòu)造曲線方程,利用曲線的性質(zhì)進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)且
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知函數(shù)
(1)判斷的單調(diào)性;
(2)記若函數(shù)有兩個(gè)零點(diǎn),求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)設(shè)函數(shù).
⑴ 求的極值點(diǎn);
⑵ 若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
⑶ 已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),當(dāng)時(shí),;當(dāng)()時(shí),.
(1)求在[0,1]內(nèi)的值域;
(2)為何值時(shí),不等式在[1,4]上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)設(shè)函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)若對(duì)任意及,恒有成立,求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com