【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大;
(2)若a=4,b+c=8,求△ABC的面積.
【答案】
(1)解:∵△ABC中, ,
∴根據(jù)正弦定理,得 ,
∵銳角△ABC中,sinB>0,
∴等式兩邊約去sinB,得sinA=
∵A是銳角△ABC的內(nèi)角,∴A=
(2)解:∵a=4,A= ,
∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos ,
化簡得b2+c2﹣bc=16,
∵b+c=8,平方得b2+c2+2bc=64,
∴兩式相減,得3bc=48,可得bc=16.
因此,△ABC的面積S= bcsinA= ×16×sin =4
【解析】(1)由正弦定理將已知等式化成角的正弦的形式,化簡解出sinA= ,再由△ABC是銳角三角形,即可算出角A的大;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,結(jié)合題意化簡得b2+c2﹣bc=16,與聯(lián)解b+c=8得到bc的值,再根據(jù)三角形的面積公式加以計算,可得△ABC的面積.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a,b∈R,且a≠2,定義在區(qū)間(﹣b,b)內(nèi)的函數(shù)f(x)=lg 是奇函數(shù).
(1)求a的值;
(2)求b的取值范圍;
(3)用定義討論并證明函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨立.
(1)求紅隊至少兩名隊員獲勝的概率;
(2)用ξ表示紅隊隊員獲勝的總盤數(shù),求ξ的分布列和數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期“共享單車”在全國多個城市持續(xù)升溫,某移動互聯(lián)網(wǎng)機構(gòu)通過對使用者的調(diào)查得出,現(xiàn)在市場上常見的八個品牌的“共享單車”的滿意度指數(shù)如莖葉圖所示:
(Ⅰ)求出這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(Ⅱ)某用戶從滿意度指數(shù)超過80的品牌中隨機選擇兩個品牌使用,求所選兩個品牌的滿意度指數(shù)均超過85的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求a,b;
(2)求f(log2x)的最小值及相應(yīng) x的值;
(3)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于任意x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},則A中所有元素的和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的左右頂點分別為A(﹣2,0),B(2,0),橢圓上除A、B外的任一點C滿足kACkBC=﹣ .
(1)求橢圓C的標準方程;
(2)過點P(4,0)任作一條直線l與橢圓C交于不同的兩點M,N,在x軸上是否存在點Q,使得∠PQM+∠PQN=180°?若存在,求出點Q的坐標;若不存在,請說明現(xiàn)由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com