【題目】已知函數(shù)滿足如下條件:

①函數(shù)的最小值為,最大值為9

;

③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2

試探究并解決如下問題:

(Ⅰ)求,并求的值;

(Ⅱ)求函數(shù)的圖象的對(duì)稱軸方程;

(Ⅲ)設(shè)是函數(shù)的零點(diǎn),求的值的集合.

【答案】(Ⅰ);(Ⅱ);(Ⅲ).

【解析】

(Ⅰ)由函數(shù)的最值結(jié)合三角函數(shù)的最值可求得,;由函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2,可得,根據(jù)即可得;由,可得,驗(yàn)證即可得;再由函數(shù)周期性即可得;

(Ⅱ)由題意結(jié)合三角函數(shù)的性質(zhì)可令,化簡(jiǎn)即可得解;

(Ⅲ)由題意可得,進(jìn)而可得,

,或,化簡(jiǎn)后代入,分別求解即可.

(Ⅰ)因?yàn)?/span>,

所以,,

所以,

所以

設(shè)的最小正周期為,

因?yàn)?/span>在區(qū)間上是單調(diào)函數(shù),則的最大值為2,

所以,所以,所以,

所以

因?yàn)?/span>,所以,

所以,即

因?yàn)?/span>,所以

,則,此時(shí),不合題意;

,則,此時(shí),符合題意;

所以

所以

因?yàn)?/span>的最小正周期為4,

所以

(Ⅱ)由(Ⅰ)知

,得

所以函數(shù)的對(duì)稱軸方程是

(Ⅲ)令,則,所以函數(shù)的零點(diǎn)都滿足:

因?yàn)?/span>是函數(shù)的零點(diǎn),所以

,或,

,或,

所以,

,

的值的集合為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過點(diǎn),,且圓心在直線上,過點(diǎn)作直線與圓交于兩點(diǎn),.

1)求圓的方程;

2)當(dāng)時(shí),若于圓交于,求直線的方程;

3)若點(diǎn)恰好是線段的中點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,AD∥BC,∠BAD=90°,四邊形CC1D1D為矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.

(I)求證:BC1∥平面ADD1;

(II)若DD1=2,求平面AC1D1與平面ADD1所成的銳二面角的余弦值;

(III)設(shè)P為線段C1D上的一個(gè)動(dòng)點(diǎn)(端點(diǎn)除外),判斷直線BC1與直線CP能否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來過于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念之后,人們對(duì)進(jìn)位制的效率問題進(jìn)行了深入的研究研究方法如下:對(duì)于正整數(shù),,我們準(zhǔn)備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進(jìn)制數(shù),通過不同的卡片組合,這些卡片可以表示個(gè)不同的整數(shù)例如,時(shí),我們可以表示出個(gè)不同的整數(shù)假設(shè)卡片的總數(shù)為一個(gè)定值,那么進(jìn)制的效率最高則意味著張卡片所表示的不同整數(shù)的個(gè)數(shù)最大根據(jù)上述研究方法,幾進(jìn)制的效率最高?  

A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在推導(dǎo)很多三角恒等變換公式時(shí),我們可以利用平面向量的有關(guān)知識(shí)來研究,在一定程度上可以簡(jiǎn)化推理過程.如我們就可以利用平面向量來推導(dǎo)兩角差的余弦公式:

具體過程如下:

如圖,在平面直角坐標(biāo)系內(nèi)作單位圓O,以為始邊作角.它們的終邊與單位圓O的交點(diǎn)分別為A,B.

由向量數(shù)量積的坐標(biāo)表示,有:

設(shè)的夾角為θ,則

另一方面,由圖3.131)可知,;由圖可知,

.于是.

所以,也有,

所以,對(duì)于任意角有:

此公式給出了任意角的正弦、余弦值與其差角的余弦值之間的關(guān)系,稱為差角的余弦公式,簡(jiǎn)記作.

有了公式以后,我們只要知道的值,就可以求得的值了.

閱讀以上材料,利用下圖單位圓及相關(guān)數(shù)據(jù)(圖中MAB的中點(diǎn)),采取類似方法(用其他方法解答正確同等給分)解決下列問題:

1)判斷是否正確?(不需要證明)

2)證明:

3)利用以上結(jié)論求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】恩格爾系數(shù)(記為)是指居民的食物支出占家庭消費(fèi)總支出的比重.國際上常用恩格爾系數(shù)來衡量一個(gè)國家和地區(qū)人民生活水平的狀況.聯(lián)合國對(duì)消費(fèi)水平的規(guī)定標(biāo)準(zhǔn)如下表:

家庭類型

貧窮

溫飽

小康

富裕

最富裕

實(shí)施精準(zhǔn)扶貧以來,根據(jù)對(duì)某山區(qū)貧困家庭消費(fèi)支出情況(單位:萬元)的抽樣調(diào)查,2018年每個(gè)家庭平均消費(fèi)支出總額為2萬元,其中食物消費(fèi)支出為1.2萬元預(yù)測(cè)2018年到2020年每個(gè)家庭平均消費(fèi)支出總額每年的增長(zhǎng)率約是30%,而食物消費(fèi)支出平均每年增加0.2萬元,預(yù)測(cè)該山區(qū)的家庭2020年將處于( )

A.貧困水平B.溫飽水平C.小康水平D.富裕水平

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,直線與平面所成的角等于

(Ⅰ)證明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, 底面,. 、分別為的中點(diǎn). 為側(cè)棱上的動(dòng)點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)試判斷直線與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠每月生產(chǎn)一種投影儀的固定成本為萬元,但每生產(chǎn)臺(tái),需要加可變成本(即另增加投入)萬元,市場(chǎng)對(duì)此產(chǎn)品的月需求量為臺(tái),銷售的收入函數(shù)為(萬元),其中是產(chǎn)品售出的數(shù)量(單位:百臺(tái)).

(1)求月銷售利潤(rùn)(萬元)關(guān)于月產(chǎn)量(百臺(tái))的函數(shù)解析式;

(2)當(dāng)月產(chǎn)量為多少時(shí),銷售利潤(rùn)可達(dá)到最大?最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案