【題目】設集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},
(1)若a=10,求A∩B;
(2)求能使AB成立的a值的集合.
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等比數列,a1=2,a3=18.數列{bn}是等差數列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數列{an},{bn}的通項公式;
(2)設Pn=b1+b4+b7+…+b3n﹣2 , Qn=b10+b12+b14+…+b2n+8 , 其中n=1,2,3,….試比較Pn與Qn的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E為CC1的中點,那么異面直線OE與AD1所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知0<k<4,直線l1:kx﹣2y﹣2k+8=0和直線l:2x+k2y﹣4k2﹣4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數滿足f(x)=ax2+bx+c(a≠0),滿足f(x+1)﹣f(x)=2x,且f(0)=1,
(1)函數f(x)的解析式:
(2)函數f(x)在區(qū)間[﹣1,1]上的最大值和最小值:
(3)若當x∈R時,不等式f(x)>3x﹣a恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知P是拋物線y2=8x上的一個動點,Q是圓(x﹣3)2+(y﹣1)2=1上的一個動點,N(2,0)是一個定點,則|PQ|+|PN|的最小值為( )
A.3
B.4
C.5
D. +1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2﹣(2a+1)x+2lnx(a∈R).
(1)當a=1時,求函數f(x)的單調區(qū)間;
(2)當a>0時,設g(x)=(x2﹣2x)ex , 求證:對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com