在一張半徑為2米的水平圓桌正中央上空掛一盞電燈,已知桌子邊緣一點(diǎn)處的亮度為E,燈光射到桌子邊緣的光線與桌面的夾角θ及這一點(diǎn)到光源的距離r三者之間的關(guān)系為:E=k·(其中k是一個(gè)與電光強(qiáng)度有關(guān)的常數(shù)),問(wèn)要使桌子邊緣處最亮E最大,應(yīng)怎樣選擇電燈懸掛的高度h(指電燈離開桌子的距離)為多大?

答案:
解析:

  解 ∵r=,∴E=k·(0<θ<).

  ∴

當(dāng)且僅當(dāng)時(shí)取等號(hào),即,tanθ=,∴h=2tanθ=.即h=,E最大.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨著機(jī)動(dòng)車數(shù)量的增加,對(duì)停車場(chǎng)所的需求越來(lái)越大,如圖,ABCD是一塊邊長(zhǎng)為100米的正方形地皮,其中ATPS是一座半徑為90米的扇形小山,P是弧TS上一點(diǎn),其余部分都是平地,現(xiàn)一開發(fā)商想在平地上建一個(gè)邊落在BC和CD上的長(zhǎng)方形停車場(chǎng)PQCR.
(1)設(shè)∠PAB=θ,試寫出停車場(chǎng)PQCR的面積S與θ的函數(shù)關(guān)系式;
(2)求長(zhǎng)方形停車場(chǎng)PQCR面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

隨著機(jī)動(dòng)車數(shù)量的增加,對(duì)停車場(chǎng)所的需求越來(lái)越大,如圖,ABCD是一塊邊長(zhǎng)為100米的正方形地皮,其中ATPS是一座半徑為90米的扇形小山,P是弧TS上一點(diǎn),其余部分都是平地,現(xiàn)一開發(fā)商想在平地上建一個(gè)邊落在BC和CD上的長(zhǎng)方形停車場(chǎng)PQCR.
(1)設(shè)∠PAB=θ,試寫出停車場(chǎng)PQCR的面積S與θ的函數(shù)關(guān)系式;
(2)求長(zhǎng)方形停車場(chǎng)PQCR面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

街道旁邊有一游戲:在鋪滿邊長(zhǎng)為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規(guī)則如下:每擲一次交5角錢,若小圓板壓在正方形的邊,可重?cái)S一次;若擲在正方形內(nèi),須再交5角錢可玩一次;若擲在或壓在塑料板的頂點(diǎn)上,可獲1元錢.試問(wèn):

(1)小圓板壓在塑料板的邊上的概率是多少?

(2)小圓板壓在塑料板頂點(diǎn)上的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一根細(xì)金屬絲下端掛著一個(gè)半徑為1 cm的金屬球,將它浸沒(méi)在底面半徑為2 cm的圓柱形容器內(nèi)的水中,現(xiàn)將金屬絲向上提升,當(dāng)金屬球全部被提出水面時(shí),容器內(nèi)的水面下降的高度是________cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案