【題目】在平面直角坐標(biāo)系xOy中,已知橢圓Γ: =1,A為Γ的上頂點(diǎn),P為Γ上異于上、下頂點(diǎn)的動(dòng)點(diǎn),M為x正半軸上的動(dòng)點(diǎn).
(1)若P在第一象限,且|OP|= ,求P的坐標(biāo);
(2)設(shè)P( ),若以A、P、M為頂點(diǎn)的三角形是直角三角形,求M的橫坐標(biāo);
(3)若|MA|=|MP|,直線AQ與Γ交于另一點(diǎn)C,且 , ,求直線AQ的方程.

【答案】
(1)解:設(shè)P(x,y)(x>0,y>0),

∵橢圓Γ: =1,A為Γ的上頂點(diǎn),

P為Γ上異于上、下頂點(diǎn)的動(dòng)點(diǎn),

P在第一象限,且|OP|= ,

∴聯(lián)立 ,

解得P( ,


(2)解:設(shè)M(x0,0),A(0,1),

P( ),

若∠P=90°,則 ,即(x0 ,﹣ )(﹣ )=0,

∴(﹣ )x0+ =0,解得x0=

如圖,若∠M=90°,則 =0,即(﹣x0,1)( ﹣x0, )=0,

=0,解得x0=1或x0= ,

若∠A=90°,則M點(diǎn)在x軸負(fù)半軸,不合題意.

∴點(diǎn)M的橫坐標(biāo)為 ,或1,或


(3)解:設(shè)C(2cosα,sinα),

,A(0,1),

∴Q(4cosα,2sinα﹣1),

又設(shè)P(2cosβ,sinβ),M(x0,0),

∵|MA|=|MP|,∴x02+1=(2cosβ﹣x02+(sinβ)2,

整理得:x0= cosβ,

=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1), =(﹣ cosβ,﹣sinβ), ,

∴4cosα﹣2cosβ=﹣5cosβ,

且2sinα﹣sinβ﹣1=﹣4sinβ,

∴cosβ=﹣ cosα,且sinα= (1﹣2sinα),

以上兩式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα= ,或sinα=﹣1(舍去),

此時(shí),直線AC的斜率kAC=﹣ = (負(fù)值已舍去),如圖.

∴直線AQ為y= x+1.


【解析】(1)設(shè)P(x,y)(x>0,y>0),聯(lián)立 ,能求出P點(diǎn)坐標(biāo).(2)設(shè)M(x0,0),A(0,1),P( ),由∠P=90°,求出x0= ;由∠M=90°,求出x0=1或x0= ;由∠A=90°,則M點(diǎn)在x軸負(fù)半軸,不合題意.由此能求出點(diǎn)M的橫坐標(biāo).(3)設(shè)C(2cosα,sinα),推導(dǎo)出Q(4cosα,2sinα﹣1),設(shè)P(2cosβ,sinβ),M(x0,0)推導(dǎo)出x0= cosβ,從而 4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣ cosα,且sinα= (1﹣2sinα),由此能求出直線AQ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖給出的是計(jì)算 的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是(
A.i≤100
B.i>100
C.i>50
D.i≤50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職業(yè)學(xué)校的王亮同學(xué)到一家貿(mào)易公司實(shí)習(xí),恰逢該公司要通過(guò)海運(yùn)出口一批貨物,王亮同學(xué)隨公司負(fù)責(zé)人到保險(xiǎn)公司洽談貨物運(yùn)輸期間的投保事宜,保險(xiǎn)公司提供了繳納保險(xiǎn)費(fèi)的兩種方案:
①一次性繳納50萬(wàn)元,可享受9折優(yōu)惠;
②按照航行天數(shù)交納:第一天繳納0.5元,從第二天起每天交納的金額都是其前一天的2倍,共需交納20天.
請(qǐng)通過(guò)計(jì)算,幫助王亮同學(xué)判斷那種方案交納的保費(fèi)較低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用35個(gè)單位正方形拼成一個(gè)矩形,點(diǎn)P1、P2、P3、P4以及四個(gè)標(biāo)記為“▲”的點(diǎn)在正方形的頂點(diǎn)處,設(shè)集合Ω={P1 , P2 , P3 , P4},點(diǎn)P∈Ω,過(guò)P作直線lP , 使得不在lP上的“▲”的點(diǎn)分布在lP的兩側(cè).用D1(lP)和D2(lP)分別表示lP一側(cè)和另一側(cè)的“▲”的點(diǎn)到lP的距離之和.若過(guò)P的直線lP中有且只有一條滿足D1(lP)=D2(lP),則Ω中所有這樣的P為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對(duì)于任意的上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 中,已知 , 底面 ,且 , 的中點(diǎn), 上,且 .

(1)求證:平面 平面 ;
(2)求證: 平面 ;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年10月18日至24日,中國(guó)共產(chǎn)黨第十九次全國(guó)人民代表大會(huì)在北京順利召開(kāi).大會(huì)期間,北京某高中舉辦了一次“喜迎十九大”的讀書(shū)讀報(bào)知識(shí)競(jìng)賽,參賽選手為從高一年級(jí)和高二年級(jí)隨機(jī)抽取的各100名學(xué)生.圖1和圖2分別是高一年級(jí)和高二年級(jí)參賽選手成績(jī)的頻率分布直方圖.

(1)分別計(jì)算參加這次知識(shí)競(jìng)賽的兩個(gè)年級(jí)學(xué)生的平均成績(jī);

(2)完成下面2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下,認(rèn)為高一、高二兩個(gè)年級(jí)學(xué)生這次讀書(shū)讀報(bào)知識(shí)競(jìng)賽的成績(jī)有差異.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中, ,角A的平分線AD交BC于點(diǎn)D,設(shè)∠BAD=α,
(Ⅰ)求sinC;
(Ⅱ)若 ,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案