已知二次函數(shù).                  
(1)若,試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)是否存在,使同時(shí)滿足以下條件①對(duì),且;②對(duì),都有。若存在,求出的值,若不存在,請(qǐng)說明理由。
(1)函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。
(2),
(1) 
當(dāng)時(shí),
函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。……6分
(2)假設(shè)存在,由①知拋物線的對(duì)稱軸為x=-1,且

  
由②知對(duì),都有

,
當(dāng)時(shí),,其頂點(diǎn)為(-1,0)滿足條件①,又對(duì),都有,滿足條件②!啻嬖,使同時(shí)滿足條件①、②!14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)試判斷上的單調(diào)性;
(2)當(dāng)時(shí),求證:函數(shù)的值域的長(zhǎng)度大于(閉區(qū)間[mn]的長(zhǎng)度定義為nm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)增區(qū)間和單調(diào)減區(qū)間;
(2)若當(dāng)時(shí)(其中e=2.71828…),不等式恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程上恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)成等差數(shù)列.
(Ⅰ)求的值;
(Ⅱ)若a,b,c是兩兩不相等的正數(shù),且a,b,c成等比數(shù)列,試判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)是否為R上的“平底型”函數(shù)?   并說明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式 對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是定義在區(qū)間上的偶函數(shù),且時(shí), (1).求函數(shù)的解析式;(2).若矩形的頂點(diǎn)在函數(shù)的圖像上,頂點(diǎn)軸上,求矩形的面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

記函數(shù),它們定義域的交集為,若對(duì)任意的,,則稱是集合的元素.
(1)判斷函數(shù)是否是的元素;
(2)設(shè)函數(shù),求的反函數(shù),并判斷是否是的元素;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求該函數(shù)的定義域和值域;
(2)如果在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;                                                    
(2)若關(guān)于的方程在區(qū)間上有實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案