分析 由已知數(shù)列遞推式可得a2k-1+a2k+a2k+1+a2k+2=$\frac{7}{2}•{2}^{2k}$=$\frac{7}{2}•{4}^{k}$.取k=1,3,5,…,19,作和得答案.
解答 解:由an+1+(-1)n an=2n(n∈N*),
∴當(dāng)n=2k時(shí),有a2k+1+a2k=22k,①
當(dāng)n=2k-1時(shí),有a2k-a2k-1=22k-1,②
當(dāng)n=2k+1時(shí),有a2k+2-a2k+1=22k+1,③
①-②得:a2k+1+a2k-1=22k-1,
①+③得:a2k+2+a2k=3•22k,
∴a2k-1+a2k+a2k+1+a2k+2=$\frac{7}{2}•{2}^{2k}$=$\frac{7}{2}•{4}^{k}$.
∴S40=$\frac{7}{2}({4}^{1}+{4}^{3}+…+{4}^{19})$=$\frac{7}{2}•\frac{4(1-1{6}^{10})}{1-16}$=$\frac{7({2}^{41}-2)}{15}$.
故答案為:$\frac{{7•{2^{41}}-14}}{15}$.
點(diǎn)評 本題考查數(shù)列遞推式,考查了數(shù)列前n項(xiàng)和的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com