【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來越受到社會(huì)的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學(xué)生成績與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績優(yōu)秀

成績不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

(Ⅰ)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有的把握認(rèn)為“學(xué)生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;

(Ⅱ)如果從全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)地抽取3名學(xué)生,求抽到成績不夠優(yōu)秀的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)作概率計(jì)算).

參考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式,其中.

【答案】(Ⅰ)有把握,理由見解析;(Ⅱ)分布列見解析,.

【解析】

(Ⅰ)根據(jù)題中所給的公式求出的值,然后根據(jù)參考附表進(jìn)行判斷即可;

(Ⅱ)由題意可以求出在全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)抽取1名學(xué)生成績優(yōu)秀的概率,成績不優(yōu)秀的概率,可以判斷可取值為0,1,2,3,根據(jù)二項(xiàng)分布的性質(zhì)進(jìn)行求解即可.

(Ⅰ)由題意知,的觀測(cè)值.

所以有的把握認(rèn)為“學(xué)生的成績優(yōu)秀與是否選修生涯規(guī)劃課有關(guān)”.

(Ⅱ)由題意知在全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)抽取1名學(xué)生成績優(yōu)秀的概率為,成績不優(yōu)秀的概率為

可取值為0,12,3.

所以的分布列為

0

1

2

3

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)若,不等式恒成立,當(dāng)為正數(shù)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項(xiàng)和為,且有.

1)求、的通項(xiàng)公式;

2)若,,求使成立的的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,直線l過點(diǎn)

若直線l被圓所截得的弦長為,求直線l的方程;

若圓P是以為直徑的圓,求圓P與圓的公共弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)兩點(diǎn)M4,﹣2),N2,4).

1)求MN的垂直平分線方程;

2)直線l經(jīng)過點(diǎn)A3,0),且與直線MN平行,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸相切于點(diǎn)(0,3),圓心在經(jīng)過點(diǎn)(2,1)與點(diǎn)(﹣2,﹣3)的直線上.

(1)求圓的方程;

(2)圓與圓相交于M、N兩點(diǎn),求兩圓的公共弦MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù). 設(shè)關(guān)于的不等式的解集為,若,則實(shí)數(shù)的取值范圍是___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為大力提倡厲行節(jié)約,反對(duì)浪費(fèi),某市通過隨機(jī)調(diào)查100名性別不同的居民是否做到光盤行動(dòng),得到如下列聯(lián)表:

做不到光盤行動(dòng)

做到光盤行動(dòng)

45

10

30

15

經(jīng)計(jì)算 附表:

參照附表,得到的正確結(jié)論是(

A.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為該市居民能否做到光盤行動(dòng)與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為該市居民能否做到光盤行動(dòng)與性別無關(guān)

C.以上的把握認(rèn)為該市居民能否做到光盤行動(dòng)與性別有關(guān)

D.以上的把握認(rèn)為該市居民能否做到光盤行動(dòng)與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn)給出下列命題:

①存在點(diǎn),使得//平面;

對(duì)于任意的點(diǎn)平面平面;

存在點(diǎn),使得平面;

④對(duì)于任意的點(diǎn),四棱錐的體積均不變.

其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案