【題目】已知 ,數(shù)列{an}的前n項(xiàng)的和記為Sn .
(1)求S1 , S2 , S3的值,猜想Sn的表達(dá)式;
(2)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.
【答案】
(1)解:∵an= ,
∴S1=a1= = ,
S2=a1+a2= + = ,
S3=S2+a3= + = = ;
…
∴猜想Sn=
(2)解:證明:①當(dāng)n=1時(shí),S1= ,等式成立;
②假設(shè)當(dāng)n=k時(shí),Sk= 成立,
則當(dāng)n=k+1時(shí),Sk+1=Sk+ak+1= + = = = = ,
即當(dāng)n=k+1時(shí)等式也成立;
綜合①②知,對(duì)任意n∈N*,Sn=
【解析】(1)依題意,可求得S1 , S2 , S3的值,繼而可猜想Sn的表達(dá)式;(2)猜想Sn= ;用數(shù)學(xué)歸納法證明,先證明n=1時(shí)等式成立,再假設(shè)n=k時(shí)等式成立,去證明當(dāng)n=k+1時(shí)等式也成立即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和歸納推理的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;根據(jù)一類(lèi)事物的部分對(duì)象具有某種性質(zhì),退出這類(lèi)事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線(xiàn)l的右上方
(1)求圓C的方程;
(2)過(guò)點(diǎn)M(1,0)的直線(xiàn)與圓C交于A,B兩點(diǎn)(A在x軸上方),問(wèn)在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (a≠0).
(1)已知函數(shù)f(x)在點(diǎn)(0,1)處的斜率為1,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若a>0,g(x)=x2emx , 且對(duì)任意的x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣f'(0)ex+2x,點(diǎn)P為曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)l上的一點(diǎn),點(diǎn)Q在曲線(xiàn)y=ex上,則|PQ|的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象如圖所示,則下列結(jié)論正確的是( )
A.函數(shù)f(x)的最小正周期為
B.直線(xiàn)x=﹣ 是函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸
C.函數(shù)f(x)在區(qū)間[﹣ , ]上單調(diào)遞增
D.將函數(shù)f(x)的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則g(x)=2sin2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(3)求證:當(dāng)x∈(0,e]時(shí),e2x2﹣ x>(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱(chēng)函數(shù)f(x)是k型函數(shù).給出下列說(shuō)法:①f(x)=3﹣ 不可能是k型函數(shù); ②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為 .
下列選項(xiàng)正確的是( )
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com